

B.5.

USAFETAC/TN-80/002

WIND FACTOR SIMULATION MODEL

User's Manual

Roger C. Whiton, Maj, USAF Patrick L. Herod, Capt, USAF

April 1980

A

Approved For Public Release; Distribution Unlimited

UNITED STATES AIR FORCE AIR WEATHER SERVICE (MAC)

USAF ENVIRONMENTAL TECHNICAL APPLICATIONS CENTER

SCOTT AIR FORCE BASE, ILLINOIS 62225

80 6 13 036

DOC FILE COPY

REVIEW AND APPROVAL STATEMENT

USAFETAC/TN-80/002, Wind Factor Simulation Model: User's Manual, April 1980, is approved for public release. There is no objection to unlimited distribution of this report to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Service (NTIS).

This technical note has been reviewed and is approved for publication.

GERALD J. DYMBERNER, Mai, USAF Chief, Aerosnace Sciences Branch Reviewing Officer

FOR THE COMMANDER

Scientific and Technical Information Officer (STINFO)

1 2 MAY 1980

The second section is

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS
BEFORE COMPLETING FORM REPORT DOCUMENTATION PAGE RUMBIER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER usafetac/tn-8ø/øø2 1D-A085486 TYPE OF REPORT & PERIOD COVERED Final Report, WIND FACTOR SIMULATION MODEL: User's Manual. PERFORMING ORG. REPORT NUM TER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) Roger C./Whiton Maj, USAF Patrick L./Herod Capt, USAF DRMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS USAF Environmental Technical Applications Center Scott AFB, Illinois 62225 11. CONTROLLING OFFICE NAME AND ADDRESS USAF Environmental Technical Applications Center NUMBER OF Scott AFB, Illinois 62225 66 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report. Unclassified 66 15a. DECLASSIFICATION DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18 SUPPLEMENTARY NOTES 19 KEY WORDS (Continue on reverse side if necessary and identify by block number) Computer applications; computer programs; computer program documentation; computerized simulation; equivalent headwind technique; great circle; great circle distance; great circle equation; great circle heading; great circle navigation; manual; meteorology; models; navigation; simulation; subroutines; user needs; weather; wind; wind factor; wind factor simulation. 20 ABSTRACT (Continue on reverse side if necessary and identify by block number) User instructions and a concise description are provided for a Wind Factor Simu-

User instructions and a concise description are provided for a Wind Factor Simulation Model (WFSM). The WFSM is a fast, economical module designed to reside as a collection of subroutines within the user's larger simulation model. The WFSM, upon call by the user, produces mean overall climatological wind factors for great circle routes between arbitrary points $^{\P}A^{\P}$ and $^{\P}B^{\P}$ (specified by latitude and longitude) anywhere on the globe. The WFSM produces wind factors in any of three modes (calm wind case, 90-percent worst case, and the mean wind case), for either of two altitudes (25,000 ft and 35,000 ft) for any (Cont'd)

DD , FORM 1473

400945 Din

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

นาว (การเก**ลร์เลข**าก)

20. ABSTRACT (Cont'd)

of four seasons of the year. In addition, the model can provide great circle distance between points (A and B. From this information and known airspeed, the user can calculate ground speed and adjusted flying time between A and B. Software solves the equation of a great circle. Program listing and flow chart are included.

USER'S MANUAL

TABLE OF CONTENTS

		PAGE
SECTION	1.0 1.1 1.2 1.2.1 1.2.2 1.2.3 1.2.4 1.2.4.1 1.2.4.3 1.3.4	GENERAL
SECTION	2.0 2.1 2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5 2.6 2.6.1 2.7.1 2.7.2 2.7.3	SYSTEM SUMMARY. 3 System Application. 3 System Operation. 3 System Configuration. 4 System Organization. 4 Performance. 6 Capabilities. 6 Assumptions. 6 Limitations. 6 Processing Time. 6 Flexibility. 6 Error Detection. 7 Data Base and Grid System. 7 Gata Rase. 7 Grid System. 9 General Description of Inputs, Processing, Outputs. 10 Input. 10 Processing. 10 Outputs. 11
SECTION	3.0 3.1 3.2 3.2.1 3.3 3.4 3.5	STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIONS
APPENDI)		WFSM Flow Chart
Figure 1 Figure 2 Figure 3	3	System Operation

v

.

LIST OF TABLES

Table 1	WFSM Subprograms
Table ?	Error Detection Features of WFSM
Table 3	Structure of Wind Data File
Table 4	Wind Data File Record Elemants
Table 5	Input Arguments to Subroutine ENRWND

SECTION 1.0 GENERAL

- 1.1 Purpose of the User's Manual. The objective of the user's manual (UM) for the Wind Factor Simulation Model (WFSM), USAFETAC Project 1923, is to provide the information necessary to use the model effectively. This user's manual is supplemented by USAFETAC/TN-80/001, Wind Factor Simulation Model, April 1980, which provides an twelepth treatment of the model's science and mathematics. This manual refers to USAFETAC/TN-80/001 frequently. Readers may wish to have the technical note available as supplementary reading.
- 1.2 Project References. The Wind Factor Simulation Model (WFSM) is embodied in a constellation of computer subroutines that calculate simulated wind factors for a larger simulation model in which the WFSM resides. Originally, the WFSM was written to serve the Military Airlift Command's (MAC) airlift system simulation called COLOSSUS. COLOSSUS is MAC's attempt to test by means of computer simulation its ability to respond to a contingency at any place or any time. MAC perceived a need to enhance the realism of COLOSSUS by adding simulated weather. The formal request for this weather support is dated 24 July 1978. This request called for three weather modules: (a) terminal weather for takeoff/departure; (b) enroute refueling weather; and (c) enroute wind factors. Efforts to meet requirement (a) began as early as 1977. This lim documents software developed to meet requirement (c).
- Project Request. 7WW/DON letter to USAFETAC/DO, Request for Weather Data, 24 111 1978.
- 1.2.2 Documentation on the Project. USAFETAC/TN-80/001, Wind Factor Simulation Model Description, April 1980. 1120 120
- 1.2.3 Documentation Concerning Related Projects. Mone.
- 1.2.4 Standards or Reference Documentation.
- 1.2.4.1 Documentation Standards and Specifications. Documentation is in accordance with DOD Standard 7035.1-S, Automated Data Systems Documentation Standards, 13 September 1977, and AFM 171-100, 300-12, and 300-15.
- 1.2.4.2 Programming Conventions. American National Standard X3.9-1966 FORTPAM programming convention has been adhered to except in the following cases:
- Extensive use of the Honeywell 6000-Series FORTRAN Execution Error Monitor (FXEM) has been made to assist in debugging.
- Continuation statements are handled with an ampersand in column 1 rather than a nonblank character in column 6. This permits running the MFSM in Honeywell TSS YFORTRAN as well as in CARDIN.
- 1.2.4.3 DOD or Federal Standards. Documentation provided in the IIM is in accordance with DOD Standard 7935.1-S, 13 September 1977.

1.3 Terms and Abbreviations:

Model: A representation, description, or imitation of a system or physical process (such as the atmosphere) in another medium (such as a computer). A model is a simnlified, generalized conceptualization of complex reality, usually based on a set of simplifying assumptions needed to obtain tractable solutions. The model is so constructed as to behave similarly to its prototype system or physical process in some sense considered critical to the problem at hand. The model abstracts or preserves suitably chosen "essential" properties of the system or process being modeled.

Simulation: A numerical technique by which systems or processes are modeled diditally in order to study the behavior of the process or system being simulated, usually as a function of time. Simulation has been described as attaining the essence without the reality. Its purpose is to permit drawing conclusions about the real-world system or process through use of the simulator as a tool for study. All simulations are models, but not all models are simulators.

Environmental Simulation: A selectively realistic synthesis of aerospace behavior consistent in space and time. A technique, often involving mathematical and probabilistic models, of describing or analyzing the environment of the effects of the environment on the system. An environmental simulation model can stand alone or can operate within a larger simulation model such as COLOSSUS.

COLOSSUS: Name given to MAC's attempt to simulate their airlift forces' capability to respond to a contingency anywhere at any time.

Wind Factor: The difference between the ground speed of an aircraft and its true airspeed.

Ninety Percent Worst: A wind factor whose value is exceeded 90 percent of the time, i.e., there is a 10-percent risk that one will encounter a wind factor more negative than the 90-percent worst wind factor.

Great Circle Distance (GCD): The distance between two noints computed along a great circle of the earth. A great circle of the earth is any circle around the surface of the earth whose center coincides with the center of the earth. All longitude lines are great circles. The only latitude line that is a great circle is the equator.

Mewton's Iterative Method: A mathematical technique applied in subroutine GRTCIR to solve a transcendental equation (see USAFETAC/TN-80/001).

Sawyer's Equivalent Headwind Technique: The mathematical technique used in the WFSM to compute wind factors. For details see USAFETAC/TN-80/001 and AWS-TR-77-267, Guide for Applied Climatology, November 1977.

1.4 Security and Privacy. This IJM and the Wind Factor Simulation Model (WFSM) for which it is written are unclassified and can be released to the public. No privacy restrictions are associated with the use of this system to include input, output, data base or programs.

was the company of the con-

SECTION 2.0 SYSTEM SUMMARY

2.1 System Application. The Wind Factor Simulation Model (WFSM) was designed and developed to be incorporated in the Military Airlift Command's simulation of airlift forces. This advanced computer simulation effort is called COLOSSUS.

Designers of the COLOSSUS simulation determined that three weather elements most seriously impact airlift system operations: terminal weather for departure/recovery, enroute visibility for inflight refueling, and enroute winds. The WFSM was developed in response to the third COLOSSUS requirement. Wind factors generated by the WFSM enhance the effectiveness of the COLOSSUS simulation by enabling calculation of realistic flight times based on climatological winds.

The WFSM provides to COLOSSUS the ground speed of an aircraft on a simulated flight from point "A" (takeoff) to point "R" (landing), two points anywhere on the globe. It does this by calculating an overall enroute mean wind factor between these points by the Sawyer equivalent headwind technique and then applying the result to a simple algebraic expression for ground speed. For details on how this is accomplished, see USAFETAC/TN-80/001.

There are at least two other applications for the WFSM. First, it can be used, with appropriate modifications, as an efficient method of generating wind and great circle navigation information. It is efficient in terms of computer run time and core storage. Its efficiency is especially evident in comparisons between the current operational wind factor models and the WFSM. In addition, this module, again with required changes, can be used in other simulators. Simulation efforts are increasing in number and complexity. It follows that a requirement for a module incorporating weather information should be included in these simulation efforts. The WFSM can be a partial fulfillment of that requirement.

2.2 System Operation. Before the wiSM is first invoked, a user-supplied initializing module must read the wind data hase from a sequential file (card, tape, or disk; but as implemented on MAC's Honeywell Series-6000 computer, a disk file) into the computer's memory.

After the data hase has been loaded into the computer's memory, the user at any time may invoke the WFSM by calling its main subroutine, ENRWND. In that call, the user tells ENRWND the location of point "A" (takeoff) and noint "B" (landing), the aircraft altitude and airspeed, and the date/time for which the wind factor is requested. The MFSM then responds by stepping the aircraft along a great circle route between "A" and "B", calculates a route-mean wind factor, adds that wind factor to the given airspeed, and returns route-mean ground speed to the user. The process is illustrated in Figure 1.

FIGURE 1. System Oneration.

A DOMESTING AND MEDICINES AND A CON-

2.3 System Configuration. The WFSM was developed for use on the MAC Honeywell 6000-Series computers at Scott AFR, Illinois. In particular, the WFSM executes on a Honeywell 6080 computer. During program design and coding, the goal of intercomputer compatibility was for the most part adhered to. With exceptions noted in paragraph 1.2.4.2, the WFSM should compile and execute on any computer with a FORTRAN compiler.

The wind data hase for the WFSM resides in the computer's core storage during execution and on a sequential file (card, tape, or disk) before execution. A user-supplied initializing module external to the WFSM must read that data hase from the file into the computer's memory before WFSM is first invoked. As implemented on the MAC Honeywell 6080, the wind data hase resides on a nermanent sequential disk file

Configuration necessary for a computer to use WFSM typically requires a FORTPAN compiler, linking loader, disk storage, and FORTRAN disk input/output capability.

2.4 System Organization. The WFSM is coded as a constellation of seven FOPTPAN subprograms with the functions described in Table 1. The principal subroutine is ENRWND, with which the user's program communicates directly via arguments of the FORTRAN CALL statement. Subroutine ENRWND, in turn, calls other subprograms, some of which call still other subprograms. The hierarchy of subroutine calls is shown in Figure 2.

TABLE 1. WESM SUPPROGRAMS.

Subprogram	Purpose
EMRWND	Main enroute wind factor subprogram, called directly by user to compute ground speed from given airspeed in any of three modes for two flight levels and four seasons of the year.
DISTAM	Called by ENRWND and HDG or directly by user to compute great circle distance between any two noints on the globe.
SPHGLO	Conversion of spherical coordinates to alohal latitude and longitude or viceversa. Called by GRTCIR.
GRICIR	Solution of great circle equation for latitude given longitude, or for longitude given latitude. Called by ENRWND.
нос	Calculation of initial heading along a great circle route flown from a given origin to a given destination. Called by ENRWND and GRTCIR.
BRUNG	For a spherical grid system whose longitude boundaries are spaced at 30° intervals, finds the longitude grid values bracketing a given arbitrary longitude. Called by ENRWND.
RPLAT	For a spherical grid system whose latitude houndaries are spaced at 15° intervals, finds the latitude grid values bracketing a given arbitrary latitude. Called by ENRWND.

Detailed explanation of the processing done by each subprogram is available in ${\tt USAFFTAC/TN=80/001}$.

As shown in Figure 3, the WESM is designed to overate as a miniature, subservient simulation within the user's overall simulation model. As such, MESM is supplied as

FIGURE 2. Hierarchy of Subroutine Calls.

FIGURE 3. WESM as Server-Model within User's Simulation Model.

a constellation of FORTRAN subroutines. Even the main WFSM module, called ENRWND, is a subroutine. All communication between WFSM and the encompassing overall simulation is done through the arguments of the user's CALL statement and corresponding arguments of the SURROUTINE ENRWND statement.

2.5 Performance.

- 2.5.1 Capabilities. The WFSM is capable of producing mean overall climatological wind factors for dreat circle routes. It does so in any of three modes: calm wind case, 90-percent worst wind case, and the mean wind case. The wind factor can be produced for two flight levels and for four seasons. In addition, the model, through its subroutine DISTAN, can provide the great circle distance (GCD) between any two points over the globe. Since it produces both wind factors and GCD, it is capable of calculating both the ground speed and the adjusted flying time between points "A" and "B" if given the airspeed.
- 2.5.2 Assumptions. The WFSM assumes that all routes are great circle routes or can be subdivided into several legs each of which is a great circle segment. It is further assumed that climb winds and descent winds play a negligible role in determining the route-mean wind factor. In the model as presently written, the simulated aircraft is always "at altitude." Since an arithmetic rather than a harmonic mean is used in computing the route-mean wind factor, it is assumed that the ground speed is less than or equal to one third of the airspeed.
- 2.5.3 Limitations. Presently, the WFSM cannot produce a "simulated" wind having a day-to-day variability. Hence, within any given season and for a particular altitude, a particular route will always experience the same wind factor, regardless of the passage of time. Requests for the simulated wind default to the mean wind.

Furthermore, the present model is incapable of producing a "forecast" wind factor. Requests for a forecast wind default to the mean wind.

Temperature, aircraft performance, fuel consumption and other elements considered by typical flight planning models are not included in the present simulation, which deals only with wind.

Operations north of 750N or south of 600S are not permitted.

The coarseness of the present 15° latitude by 30° longitude grid precludes use of the model for calculation of the operationally realistic wind factors unless changes are made. Simple modifications to the existing data base and grid system, along with corresponding changes in the software, can remove this limitation.

Specifically, the following restrictions must be adhered to:

- a. No route should be flown directly over either nole.
- b. Neither pole should serve as a point "A" or "B."
- c. Circumferential or round-robin flights in which "A" and "B" coincide will be aborted. Such flights should be broken into smaller segments.
- d. Routes or segments of routes flown directly north or directly south along a longitude line will also abort.
- e. At present, the model allows flights only at altitudes of 25,000 feet and 35,000 feet.
- f. All departure and destination points must lie within the latitude range from 7504 to 600 S.

Pestrictions e and f were imposed in order to reduce the core storage requirements of the model.

- 2.5.4 Processing Time. Generating a wind factor for a simulated aircraft flying a long route (4,725 nautical miles) requires approximately 0.1-0.5 seconds of central processing unit (CPU) time on a Honeywell 6080 general purpose computer. The CPU time depends on the number of legs in the simulated flight. Accordingly, this CPU time, referring as it does to a very long route, represents almost a worst case timing estimate.
- 2.5.5 Flexibility. A number of the limitations of the WESM can be overcome by selective modification of the model, the data base, or both. Since he WESM was

4-2.00

built for economy in run time and storage, such modifications will have the side effect of increasing run time and/or storage. In particular, the resolution of the WFSM grid can easily be improved by changing delta-latitudes and delta-longitudes in the model, altering the grid numbering scheme, and adding to the data base. In addition, the number of vertical levels and time periods can be increased. With more effort, WFSM capabilities can be expanded to include a "simulated" (i.e., variable) wind by writing Part V of subroutine ENRWND, which is presently set to default to the mean wind.

2.5.6 Error Detection. User inputs to the WFSM are scanned for legal values. In iterative calculations, iteration counters are used to flag computations that are diverging or failing to converge. The Honeywell 6000-Series FORTRAN Execution Error Monitor (FXEM) is invoked to display to the user any errors so identified. The FXEM error message, including error number and a plain text diagnostic, are displayed on SYSOUT. Error number 61 has been used for all WFSM errors. Whenever FXEM error 61 annears, the user knows that a problem associated with the WFSM has been detected. Each FXEM error has a disposition. Some permit the program to continue executing, while others produce a program abort. Presently, FXEM error 61 causes program abort. Users can alter this disposition by means of initializing call to the FXEM module. Errors and problems detected and treated by the WFSM are summarized in Table 2.

2.6 Data Base and Grid System

2.6.1 Data Rase. Basic data for the WSFM are the USAFETAC Single Integrated Operational Plan (SIOP) winds. With a period of record extending from January 1972 to December 1976, the SIOP winds contain mean u-component, v-component, and vector standard deviation, tabulated on a 5-degree offset grid. This grid is much finer than that used by the WFSM.

To prepare a data hase for the WFSM's 150 latitude by 300 longitude grid system, simple averaging is used. The u-component, the v-component, and the vector standard deviation are averaged separately. The average is performed by extracting from the SIOP winds three values latitudinally and six values longitudinally. The resulting 18 values are summed and the sum divided by 18 to obtain the mean data values for each grid sector. In this way, mean u-component, v-component, and vector standard deviation are obtained for all 108 grid sectors. Such a data hase is constructed for January (winter), April (spring), July (summer), and October (fall) for altitudes 25,000 feet (taken from 400-mb winds) and 35,000 feet (taken from 250-mh winds). Using an in-house USAFETAC program WIND, the

4 season x 2 altitude = 8 sets

of 108-sector wind data are converted from u, v, and vector standard deviation to direction (beta angle, described in Annendix B, USAFETAC/TM-80/001), speed, and variance. After conversion, the winds are stored sequentially in a data file in the order described in Table 3. Each sector of the data file requires one record of disk storage containing the three elements of information shown in Table 4.

There are

4 seasons \times 2 altitudes \times 108 sectors = 864 records

of wind data in the data file. To be used by the WFSM, the data hase must be loaded from the data file into the arrays.

DIR(870) Wind Direction, Beta Angle, Radians

SPD(870) Wind Speed, Knots

VAR(870) Wind Variance, Knots?

which are located in the COMMON block WEA and require 2.6K words of computer core storage. The COMMON block must be loaded with wind data before the WESM is first executed. Most often, an initializing routine external to the WESM is used for this nurpose. That routine merely reads the 864 wind records in order and stores them,

TABLE 2. ERROR DETECTION FEATURES OF WESM.

Suhroutine	Error Description/MESSAGE	FXEM Display	Disposition
ENRWND	Wind ontion less than O or greater than 3 ILLEGAL WIND OPTION	Yes	Ahort
ENRWNO	Latitude or longitude out- side legal range ILLEGAL LAT/LON	Yes	Ahort
ENRWND	Julian date greater than 366 or less than 1 ILLEGAL JULIAN DATE	Yes	Ahort
ENRWND	Altitude index less than 1 or greater than 2 ILLEGAL ALTITUDE	Yes	Ahort
ENRWND	Subroutine GRTCIR twice consecutively failed to converde when solving for longitude of Candidate Point #2 GRTCIR FAILED TWICE	Yes	Abort
EMRWND	Number of legs of the simu- lated flight exceeds a variable maximum number currently set to 50 RUNAWAY POUTE	Yes	Abort
GRTCIR	Subroutine function vector less than 1 or greater than 5 ILLEGAL ICONV	Yes	Ahort
GRTCIP	Direct north-south flight is attempted SOLUTION NOT UNIQUE IN THETA	Yes	Abort
GRTCIR	Newton's iterative method fails to converge, as indicated by an iteration count exceeding a variable maximum currently set at 7. Because of the way in which GRTCIR is used by ENRWND, failure to converge is sometimes normal behavior. In these cases no error message is displayed and the program continues.	No	Continue
	When, the GRTCIR function flag, ICONV, is set to 2, an error message SOLUTION DID NOT COMVERGE is displayed, and the pro-		
	gram aborts.	Yes	Ahort
SPHGLO	Erroneous function flag ICONV. Error code ICONV≈10 returned	No	Continue
SPHGLO	Out-of-hounds latitude. Error code ICONV=11 returned		
	revurnen	Mo	Continue

SPHGLO	Out-of-bounds longitude. Error code ICONV=12 returned	No	Continue
SPHGLO	Nut-of-bounds A Error code ICONV=13 returned	No	Continue
SPHGLO	Out-of-bounds φ Error code ICONV=14 returned	No	Continue

Table 3. STRUCTURE OF WIND DATA FILE.

Season	Flight Level	Record Numbers
Winter	250 350	1 - 109 109 - 216
Spring	250 350	217 - 374 375 - 432
Summer	250 350	433 - 540 541 - 648
Fall	250 350	649 - 756 757 - 864

Table 4. WIND DATA FILE RECORD ELEMENTS.

Element	Units	Columns	FORTRAN Format
Wind Direction (Beta Angle)	radians	1-15	F15.5
Wind Speed	knots	16-30	F15.5
Variance	knots ²	31-45	F15.5

without rearrangement, in the COMMON block WEA. Thereafter, the wind data hase can be accessed in terms of a record number NRND as follows:

DIR(NRND) SPD(NRND) VAR(NRND)

The record number MRND is computed as follows:

2.6.2 Grid System. The WFSM is required to be economical in terms of computer core storage and run time; yet the model must provide a global wind factor capability to the user. These conflicting requirements dictated the use of a coarse grid. The original idea, motivated by the latitude/longitude orientation of the winds used as input data, was to have a grid system in global (latitude/longitude) coordinates. The grid would have a spacing of 150 latitude by 300 longitude and would cover the globe, requiring 144 grid sectors (12 sectors from pole to pole times 12 sectors around the equator). Closer investigation of the latitudes of the COLOSSUS terminals and routes indicated that grid sectors above 750N and helow 600S were unnecessary. Since three quantities (wind direction, speed, and variance) are stored for each grid sector for four seasons and two flight levels, approximately 0.87K words of core storage could be saved by reducing the number of grid sectors from 144 to 108.

A THE COME BY ME AND THE ME THE PER PARTY.

The grid system chosen for implementation is in global (latitude/longitude) coordinates with a resolution of 15° latitude by 30° longitude. The grid system extends from $75^{\circ}N$ to $60^{\circ}S$ latitude (9 rows) and globally in longitude (12 columns). Hence, there are 108 grid sectors. Numbering of the grid sectors is shown in Figure 4. It is important to note that column 1 is keyed on $30^{\circ}W$, not 0° .

	Colum	n # —	→										
	_ 1	2	3_	. 4	5	6	7	8	9	10	11	12	- 75 ⁰ N
Row # 1	1	2	3	4	5	6	7	8	9	10	11	12	- 60°N
↓ 2	13	14	15	16	17	18	19	20	21	22	23	24	BU-N [
3	25	26	27	28	29	3 0	31	32	33	34	35	3 6	- 700M
4	37	3 8	3 9	40	41	42	43	44	45	46	47	48	— 30°N
5	49	50	51	52	53	54	55	56	57	58	59	60	_ 0°
6	61	62	63	64	65	66	67	68	69	7 0	71	72	_ 0-
7	73	74	7 5	76	77	78	79	80	81	82	83	84	— 30°S
8	85	86	87	88	89	90	91	92	93	94	35	9 5	70-3
9	97	98	99	100	101	102	103	104	105	106	107	108	co0e
	V												<u></u> 60°S
	0	0		90	°E		18	00		90	οM		

FIGURE 4. Grid System for WFSM.

A grid system such as this, involving undefined regions near the noles, prevents flights over the poles (which would be complicated by the singularity in coordinate systems at the poles). The coarseness of the present grid system precludes use of this model for calculation of operational wind factors. A coarse grid is suitable for simulation, however. The grid could be made finer if improved meteorological resolution is desired.

2.7 General Descriptions of Inputs, Processing, Outputs.

2.7.1 Input. A user employing the WFSM to calculate a route-mean wind factor and ground speed must stipulate the global (latitude/longitude) coordinates of noint "A" (takeoff) and point "B" (landing), the Julian base date of the wind factor request (used to determine season of the year), aircraft altitude (25,000 ft or 35,000 ft), wind option (calm, mean, or 90-percent worst), and airspeed.

.

.

To accommodate future growth, the user must also stipulate Greenwich mean base time of the wind factor request and forecast hours ahead of the wind factor requested. Because the WFSM does not as yet have a capability to generate forecast wind factors, these two inputs are ignored and may have any value.

2.7.2 Processing. The keystone subprogram of the WFSM is ENRHND, which accomplishes most of the aircraft navigation except solution of the equation of a great circle. It also accomplishes all of the meteorology involved in calculation of the wind factor (see Chapter 3, USAFETAC/TN-80/001).

The ENRWND subprogram navigates a simulated aircraft over a great circle route from point "A" to point "B" in a global (latitude/longitude-oriented) grid system whose resolution is 15° latitude by 30° longitude. The subroutine determines which grid sector the aircraft is in and the length of the aircraft's path through the sector. Then the routine consults the wind data hase for the particular grid sector, flight level, and season to obtain sector-mean wind direction, speed, and variance. Cross-track and along-track components of the wind are computed. These are weighted by the length of the aircraft's track through the sector and are accumulated. At the

end of the simulated flight, the accumulators are divided by the total great circle distance for the flight, producing a distance-weighted, route-mean cross-track wind component, an along-track component and a variance. From these a route-mean wind factor is computed using Sawyer's equivalent headwind technique (see Chapter 3, USAFETAC/TN-80/001). If the 90-percent worst wind option has been selected, that wind factor is statistically adjusted to the 10-percent risk value. The wind factor is then added to the airspeed to obtain the route-mean airspeed. If the calm wind option is requested, all these computations are bypassed, and a zero wind factor is used. Presently, requests for the simulated wind option will default to the mean wind. In the mean wind case, the wind factor is developed directly from a mean wind data hase. In the 90-percent worst case, this mean wind factor is statistically adjusted to a value such that 10 percent of the flights over that route will experience a worse wind factor (10-percent risk).

 $2.7.3\,$ Outputs. The output from the WFSM (subroutine ENRWND) is the variable GSPEED, a real quantity representing the aircraft's ground speed in knots.

and the company of the

SECTION 3.0 STAFF FUNCTIONS RELATED TO TECHNICAL OPERATIONS

3.1 Initiation Procedures. The Wind Factor Simulation Model (WFSM) operates within a larger model, such as MAC's COLOSSUS. The larger model invokes the WFSM by issuing calls to its subroutines, principally subroutine ENRWND. Before the first call to WFSM, the WFSM must have been initialized by reading wind data from the data hase into the COMMON block WEA. Users must provide this special initializing routine, as the WFSM code assumes wind data have already been read into core. A suitable routine is shown below:

COMMON /WEA/ DIR(870), SPD(870), VAR(870)

DO jij NREC = 1 ,864

READ (fc, iii) DIR(NREC), SPD(NREC), VAR(NREC)

iii FORMAT (3F15.5)

iii CONTINUE

In this example, iii and jij are integer FORTRAN statement numbers. The file code for the wind data base is fc.

Joh control language (JCL) or its equivalent is needed to equate the logical file for with a catalogued file name on the particular computer system used. Assuming that the wind data hase is on a sequential disk file called PWIND.SQ within the subcatalogue MACRO in catalogue MACRO, then the Honeywell 6000-Series JCL is

\$ PRMFL fc.R.S.MACPO/MACRO/PWIND.SO

where fc is the file code selected above. The \$ PRMFL JCL must appear behind the \$ EXECUTE record in a Honevwell job. Structure and format of the data hase contained in the file PWIND.SO is outlined in Table 3.

3.2 Staff Innut Requirements. The WFSM communicates with the user's simulation model only through the argument list of the user's call to subroutine ENRWNO.*

Whenever a wind factor is desired in the user's model, the user should place a call to ENRWND, supplying the values for input arguments. Subroutine ENRWND then takes control, calculates a route-mean wind factor and uses it to prepare the output argument, namely the ground speed of the aircraft. The user's call to subroutine ENRWND should be of the form.

CALL ENRWHO (FRMLAT, FRMLNG, TOLAT, TOLNG, JULDAT,

GMT, FCHRS, IALT, IOPTN, ASPEED, GSPEED)

Inputs to the WFSM are in the form of input arguments to subroutine ENRWMP. These input arguments include the global (latitude/longitude) coordinates of point "A" (takeoff) and point "R" (landing). The user specifies which one of the four seasons he needs by stipulating a Julian base date (JULDAT) from 1 to 366. The user requests calm, mean, or 90-percent worst winds by specifying a wind option (IOPTM) from 0 to 3. The user then specifies the altitude of the aircraft by setting the flag IALT to 1 for 25,000 feet or 2 for 35,000 feet, and airspeed in knots in the input variable ASPEED.

*The exception is that user's may call subroutine DISTAN directly if they need a great circle distance, or function HDG if they want an initial great circle heading.

Commence of the state of the st

To accomposate future growth, the user must also stipulate GMT, the Greenwich mean base time (0.0-24.0) of the wind factor request, and FCHRS, a forecast hours ahead of the wind factor required. Presently, these inputs are ignored and may have any value.

A description of these input arguments is contained in Table 5.

TABLE 5. INPUT ARGUMENTS TO SUBROUTINE ENRWND.

Variable Name	Data Tyne	Definition	Units/Values
FRMLAT	Rea1	Latitude of point "A" (Takeoff)	Decimal degrees (75.0° to -60.0°)
FRMLNG	Real	Longitude of point "A" (Takeoff)	Decimal degrees (180.0° to -180.0°)
TOLAT	Real	Latitude of point "B" (Landing)	Decimal degrees (75.0° to -60.0°)
TOLNG	Real	Longitude of point "R" (Landing)	Decimal degrees (180.0° to -180.0°)
JULDAT	Integer	Julian hase date of wind factor request	1 - 366
GMT	Real	Greenwich base time of wind factor request	0.0 - 24.0 hrs
FCHRS	Real	Forecast hours ahead	> 0.0 hrs
IALT	Integer	Altitude index	1 = 25,000 ft 2 = 35,000 ft
IOPTN	Integer	Wind option or mode	0 = Calm wind 1 = Simulated wind (Defaults to 3) 2 = 90-percent worst wind 3 = Mean wind
ASPEED	Real	Airspeed	Knots

- 3.2.1 Input Formats and Composition Rules. Input arguments for subroutine ENRWND are presented in Table 5. Special format rules are as follows:
- a. Latitudes and longitudes must be in decimal degrees, not the degrees-minutes-seconds system, e.g., 36.5° rather than 36° 30'.
 - b. South latitudes and east longitudes must be negative.
- 3.3 Output Requirements. Output argument for subroutine ENRWND is the variable GSPEED, a real quantity representing the aircraft's ground speed in knots. In addition, users may call subroutine DISTAN directly for a great circle distance, or function HDG for an initial great circle heading.
- 3.4 Utilization of System Outputs. The calling program, e.g., a simulation such as MAC's COLOSSUS, uses the WFSM to obtain the ground speed of an aircraft flying from point "A" to point "B". In order to provide the ground speed, the WFSM must calculate a wind factor. Most of the work in this module occurs in finding that wind factor. Once this is known, it is a simple matter to calculate the ground speed (see section 2.1 above and USAFETAC/TN-PO/OO1). The ground speed information is important to the user's simulation because from it the adjusted flying time can be calculated. The user's simulation then has a timing factor to use for mission planning, war gaming, judging contingency response capabilities, and other applications.

The service commission that are proposed in the contract of

was not consider the

3.5 Recovery and Error Correction Procedures. To assist in debugging efforts, considerable use of the Honeywell Series 6000 FORTRAN Execution Error Monitor (FXEM) has been made. Whenever FXEM error 61 appears, there is a problem in the wind factor routines. A plain text diagnostic, indicating the nature of the problem, will appear on SYSOUT. Presently, FXEM error 61 is set to abort execution of the main program. By a call to one of the FXEM initializing routines, the user may set the disposition of FXEM error 61 to "continue" rather than "abort." No explicit restart features have been incorporated into the WFSM. Such procedures would not be feasible in an iterative, space-stepped solution.

Land and the contraction of the contract of th

WFSM FLOW CHART

Alle and a see Carting and

And the same of the same of the same

The state of the s

أحبعيني أويان

Appendix B

WFSM PROGRAM LISTING

```
CENRWND ENROUTE WIND/R. C. WHITON/27 FEB 1979
              SUBROUTINF ENRWND (FRMLAT, FRMLNG, TOLAT, TOLNG, JULDAT, GMT,
               FCHRS. IALT. IOPTN. ASPEED. GSPEED)
        C***
            *********************
        C*
                             ENRWND
 8
        C*
             PROGRAM ID-
        C *
             MET ANALYST-
                             MAJ ROGER C. WHITON. USAFETAC/DNS. EXT 5412
                             MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
        C *
             SYS ANALYST-
10
11
        C*
             PROGRAMMER-
                             MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
12
13
        C *
             CREATED ON-
                             27 FEB 1979
                                                   PROJECT- 192301
14
        C *
15
        C*
             DESCRIPTION-
                             THIS SUBROUTINE SUBPROGRAM CALCULATES CLIMATOLOGI-
16
        C*
                             CAL WIND FACTORS BY SAWYER'S EQUIVALENT HEADWIND
17
        C *
                             TECHNIQUE FOR REASONABLY ARRITRARY GREAT CIRCLE
18
        C *
                             ROUTES AT SPECIFIED CONSTANT ALTITUDES FOR ANY OF
19
        C*
                             FOUR SEASONS OF THE YEAR IN ANY OF FOUR MODES OR
                             WIND OPTIONS (CALM WIND, SIMULATED WIND, MEAN
        C*
2 C
21
        C *
                             WIND, AND 90% WORST WIND). CLIMB AND DESCENT
22
        C*
                             WINDS ARE NOT PROVIDED FOR. TEMPERATURES AND
                             AIRCRAFT PERFORMANCE/FUEL CONSUMPTION ARE NOT PRO-
23
        C *
24
        C*
                             VIDED FOR.
25
        C *
                             THE SUBPROGRAM NAVIGATES A SIMULATED AIRCRAFT OVER
26
        C*
27
        C*
                             A GREAT CIRCLE ROUTE FROM POINT 'A' (FRMLAT, FRMLNG)
28
        C *
                             TO POINT 'B' (TOLAT, TOLNG) IN A GLOBAL (LATITUDE/
                             LUNGITUDE ORIENTED) GRID SYSTEM WHOSE RESOLUTION IS
29
        C *
30
        C*
                             15 DEGREES LATITUDE BY 30 DEGREES LONGITUDE. THE
31
        C *
                             SUBROUTINE DETERMINES WHAT GRID SECTOR THE AIRCRAFT
                             IS IN AND THE LENGTH OF THE AIRCRAFT'S PATH THROUGH
32
        C *
33
        C *
                             THE SECTOR. THEN THE ROUTINE CONSULTS THE WIND DATA
34
        C *
                             BASE FOR THE PARTICULAR GRID SECTOR. FLIGHT LEVEL
                             AND SEASON TO OBTAIN SECTOR-MEAN WIND DIRECTION.
35
        C*
                             SPEED AND VARIANCE. CROSS-TRACK AND ALONG-TRACK
36
        C *
37
        C*
                             COMPONENTS OF THE WIND ARE COMPUTED. THESE ARE
                             WEIGHTED BY THE LENGTH OF THE AIRCRAFT'S TRACK
38
        C*
39
        C *
                             THROUGH THE SECTOR. AT THE END OF THE SIMULATED
40
        C *
                             FLIGHT, A DISTANCE-WEIGHTED. ROUTE-MEAN CROSS-TRACK
                             COMPONENT, ALONG-TRACK COMPONENT AND VARIANCE IS
41
        C*
42
        C*
                             COMPUTED. FROM THESE. A ROUTE-MEAN WIND FACTOR IS
43
        C *
                             COMPUTED AND ADDED TO THE AIR SPEED TO OBTAIN
                             GROUND SPEED. LATITUDE/LONGITUDE OF POINTS 'A'
44
        C *
45
                             AND '8.' THE ALTITUDE OF THE AIRCRAFT. THE JULIAN
        C *
46
        C*
                             DATE AND GMT OF THE FLIGHT, AND THE AIRCRAFT'S
47
                             AIR SPEED ARE GIVEN. THE GROUND SPEED IS CALCU-
        C *
                             LATED BASED ON WIND FACTOR. WIND FACTOR CALCULA-
4ε
        C *
                             TIONS CAN BE MADE IN ANY OF FOUR MODES--CALM WIND.
49
        C*
50
        C *
                             SIMULATED WIND. 90% WORST WIND. AND MEAN WIND.
51
        C *
                             IN THE CALM WIND CASE, THE ROUTE-MEAN WIND FACTOR
                             IS SIMPLY SET TO ZERO. WITH NO NAVIGATION OF THE
52
        C *
5.3
        C*
                             AIRCRAFT OR ACCUMULATION OF DISTANCE-WEIGHTED
                             WIND COMPONENTS BEING NECESSARY. THE SIMULATED
54
        C *
55
                             WIND CASE IS RESERVED FOR FUTURE DEVELOPMENT. IN
        C *
                             WHICH A VARIABLE WIND MAY BE IMPLEMENTED SUCH THAT THE WIND FACTOR NEED NOT BE IDENTICALLY THE
56
        C *
57
        C*
                             SAME EVERY TIME THE ROUTE IS FLOWN. PRESENTLY.
58
        C*
59
                             THE SIMULATED WIND DEFAULTS TO THE MEAN WIND.
        C*
                             IN THE MEAN WIND CASE. THE MEAN WIND IS DEVELOPED
60
        C*
```

DIRECTLY FROM THE MEAN WIND DATA BASE. IN THE 90% WORST CASE. THIS MEAN WIND FACTOR IS STATISTICALLY ADJUSTED TO A VALUE SUCH THAT ONLY 10% OF FLIGHTS OVER THAT ROUTE WILL EXPERIENCE A WORSE WIND FACTOR (10% RISK).

THE USER DICTATES WHETHER HE WANTS CALM. SIMULATED.

THE USER DICTATES WHETHER HE WANTS CALM. SIMULATED. MEAN OR 90% WORST WINDS BY SPECIFYING A WIND OPTION (IOPTN) FROM 0 TO 3 (SEE TABLE IN PART I OF SUBPROGRAM). THE USER SPECIFIES WHICH OF THE FOUR SEASONS OF THE YEAR HE WANTS WINDS FOR BY STIPULATING A JULIAN DATE (JULDAT) FROM 1 TO 366. THE TABLE FOR CONVERSION OF JULIAN DATE TO SEASON OF THE YEAR IS PROVIDED IN PART III OF THE SUBPROGRAM. THE USER SPECIFIES THE ALTITUDE OF THE AIRCRAFT BY SETTING THE FLAG IALT TO 1 FOR 25.000 FT AND TO 2 FOR 35.000 FT. THE USER SPECIFIES HIS AIRSPEED IN KNOTS IN THE INPUT VARIABLE ASPEED AND RECEIVES CALCULATED GROUND SPEED IN KNOTS IN THE OUTPUT VARIABLE GSPEED.

ARCHITECTURE OF THE SUBPROGRAM IS SUCH THAT PART II HANDLES THE CALM WIND CASE. PART III THE MEAN WIND. PART IV THE 90% WORST WIND. AND PART V THE SIMULATED WIND. PART I ACCOMPLISHES BRANCHING TO PARTS II-V. PART VI HANDLES WRAPUP AND NORMAL TERMINATION. PART VII HANDLES ABNORMAL TERMINATION.

THE METHODS USED BREAK NEATLY INTO TWO CATEGORIES. (1) GEODESY AND NAVIGATION. AND (2) METEOROLOGY.

(1) GEODESY AND NAVIGATION...

THE AIRCRAFT IS NAVIGATED ALONG A GREAT CIRCLE ROUTE BETWEEN POINTS 'A' AND 'B' BY MOVING FROM A POINT CALLED THE 'CURRENT-POINT' (XLATC, XLNGC) TO A POINT CALLED THE 'NEXT-POINT' (XLATNP, XLNGNP). MOST OF THE COMPUTATION OF THE NEXT-POINT IS DONE IN GLOBAL (LATITUDE/LONGITUDE) COORDINATES.

FOR ANY GIVEN CURRENT-POINT, THE NEXT-POINT IS EITHER THE POINT WHERE THE GREAT CIRCLE ROUTE CROSSES A LATITUDE GRID LINE (0, 15, 30, ... DEG) OR THE POINT WHERE THE ROUTE CROSSES A LONGITUDE GRID LINE (0, 30, 60, ... DEG), WHICHEVER IS CLOSER TO THE CURRENT-POINT.

AT THE CURRENT-POINT. THE AIRCRAFT'S HEADING CAN BE CALCULATED VIA THE HEADING FORMULA (FUNCTION HDG). KNOWLEDGE OF THE LOCATION OF THE CURRENT-POINT AND THE AIRCRAFT'S HEADING AT THAT POINT DICTATES THE NEXT LATITUDE CROSSING AND THE NEXT LONGITUDE CROSSING. CANDIDATE #1 FOR NEXT-POINT IS THE POINT OF NEXT LATITUDE CRUSSING XLATNX (AND ASSOCIATED LONGITUDE XLNGAS). CANDIDATE #2 IS THE POINT OF NEXT LONGITUDE CROSSING XLNGNX (AND ASSOCIATED LATITUDE XLATAS).

CALCULATION OF LONGITUDE XLNGAS ASSOCIATED WITH A GIVEN LATITUDE XLATNX IS DONE ITERATIVELY BY SUB-ROUTINE GRTCIR. AHICH SOLVES THE EQUATION OF A GREAT CIRCLE. NEWTON'S ITERATIVE METHOD WITH AN EXACT SPHERICAL TRIANGLE FIRST GUESS IS USED. VIRTUALLY ALL OF THE COMPLEXITY OF SUBROUTINES GRTCIR AND ENRWIP IS ATTRIBUTABLE IN ONE WAY OR ANOTHER TO THIS PROBLEM OF SOLVING THE EQUATION OF A GREAT CIRCLE FOR LONGITUDE. GIVEN THE LATITUDE.

METHOD-

C*

93 C* 94 C* 95 C*

61

62

63

64

65

66

67

68

69

70 71

72

73 74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

C *

C *

C*

C*

C *

C *

C *

C *

C *

C*

C*

C*

C*

C *

C *

C*

C *

C*

C *

C *

C *

C*

C*

C *

96 C * 97 C * 98 C * 99 C * 100 C* 101 C * 102 C * 103 C * 104 C * 105 106 C * 107 C * 108 C * 109 C *

113 C * 114 C * 115 C * C * 116 117 C * 118 €* 119 C * 120 C *

110

111

121

122

123 C+ 124 C* 125 C* 126 C* 127 C* 128 C*

5 - 1 Ath 3 - 1 - 1

129	C *
130	Č*
131	C*
132	C*
133	C+
134	C *
135	C *
136	C *
137	C*
	C*
138	C.
139	Č*
140	C*
	-
141	C *
142	C*
143	C*
143	C+
144	C *
145	C*
	C* C*
146	C#
147	C*
148	C+
	-
149	C*
150	C*
	Č*
	C +
152	C*
153	C#
	-
154	C*
155	C *
156	C *
157	C *
158	C *
159	C *
160	C *
161	C* C*
	C +
162	C *
163	C *
	č*
164	C.
165	C *
166	C *
167	C *
168	C *
169	C *
170	C*
171	C #
	C*
172	C +
173	C *
174	C *
7.5	C#
175	
176	C *
177	C *
178	Ç.*
179	Ç.*
180	Č+
	C +
181	C *
182	C*
183	C *
184	C *
185	Č*
186	C *
187	C *
186	C*
189	C *
190	C #
191	
192	C *
193	C *
	• •

194

195

196

C *

CALCULATION OF LATITUDE XLATAS ASSOCIATED WITH A GIVEN LONGITUDE XLNGNX IS DONE DETERMINISTICALLY BY SUBROUTINE GRTCIR. NO DIFFICULTY IS ENCOUNTERED HERE.

CANDIDATES FOR NEXT-POINT ARE THEN AS FOLLOWS ...

CANDIDATE #1 (XLATNX, XLNGAS)
CANDIDATE #2 (XLATAS, XLNGNX)

WITH CANDIDATES 1 AND 2 IDENTIFIED, SUBROUTINE DISTAN IS THEN USED TO CALCULATE GREAT CIRCLE DISTANCES AS FOLLOWS...

51 GCD FROM CURRENT-POINT TO CAND #1
52 GCD FROM CURRENT-POINT TO CAND #2

THE CANDIDATE WITH THE SHORTER S-DISTANCE IS SE-LECTED AS THE NEXT-POINT.

THE CURRENT-POINT CAN THEN BE THOUGHT OF AS THE POINT WHERE THE AIRCRAFT ENTERS THE GRID SECTOR. AND THE NEXT-POINT AS THE POINT WHERE THE AIRCRAFT DEPARTS THE SECTOR. THE DISTANCE SNP BETWEEN CURRENT-POINT AND NEXT-POINT IS THE DISTANCE BY WHICH THE WIND COMPONENTS AND VARIANCE ARF WEIGHTED IN COMPUTING THE ROUTE-MEAN WIND FACTOR.

2. METEOROLOGY...

WITH CURRENT-POINT AND NEXT-POINT ESTABLISHED. AN APPROXIMATE MIDPOINT (XLATM, XLNGM) BETWEEN THEM IS ESTABLISHED. THE NUMBER NSEC INDICATING WHICH OF THE 108 GRID SECTORS THROUGH THE AIRCRAFT IS PASSING THROUGH IS THEN CALCULATED. BASED ON (XLATM. XLNGM). SEE DESCRIPTION OF THE GRID SYSTEM BELOW. SINCE FOUR SEASONS AND TWO FLIGHT LEVELS. AS WELL AS 108 GRID SECTORS. ARE PROVIDED FOR. A DATUM-NUMBER NRND IS OBTAINED FROM THE GRID SECTOR NUMBER NSCC (1-106). THE ALTITUDE INDEX 1ALT (1-2) AND THE SEASON INDEX ISEASN (1-4) AS FOLLOWS...

WITH THE DATUM-NUMBER NRND CALCULATED, THE DATA BASE (SEE DESCRIPTION BELOW) IS CONSULTED TO OBTAIN SECTOR-MEAN WIND DIRECTION DIRM (RADIANS, IN BETA-ANGLE FORM, AS DESCRIBED BELOW), SPEED SPDM (KNOTS) AND VARIANCE VARM (KNOTS**2)...

DIRM = DIR(NRND) SPDM = SPD(NRND) VARM = VAR(NRND)

THE AIRCRAFT HEADING AT (XLATM, XLNGM) IS COMPUTED BY MEANS OF FUNCTION HDG. THE HEADING HDGM IS COMPUTED IN BETA-ANGLE FORMAT (SEE BELOW) AND IN THAT FORMAT IS REPRESENTED BY THE ANGLE ALPHA.

ALPHA, THE WIND DIRECTION DIRM, AND THE WIND SPEED SPDM ARE USED TO CALCULATE THE ALONG-GROUND-TRACK WIND COMPONENT VGM AND THE CROSS-GROUND-TRACK WIND COMPONENT VCM...

٠. ٠٠ ، ١٠ ٠

197 198 C * 199 C* 200 C* 201 C* 202 C* 203 C* 204 C* 205 C * 206 C* 207 C* 208 C * 209 C* 210 C * 211 C* 212 C* 213 C* 214 C * 215 C * 216 C* 217 C* 218 C* 219 C* 220 **C*** 221 C * 222 C* 223 **C*** 224 C * 225 C * C * 226 **C*** 227 228 **C*** 229 C * 230 C * 231 **C*** 232 **C*** 233 C* 234 **C*** 235 **C*** 236 **C*** 237 C * 238 C * **239** C* 240 C* 241 C * **C*** 242 243 C * 244 **C*** 45 C # 446 C * 247 C * 248 **C*** C * 449 250 C * 251 C * 252 C *

253

254

255

256 257

∠58

C *

C *

C*

C #

C *

C*

VGM = SPDM * COS(ABS(DIRM - ALPHA)) VCM = SPDM * SIN(DIRM - ALPHA)

A TIME-AVERAGED "IND FACTOR FOR THE PRESENT LEG IS THEN COMPUTED USING SAWYER'S EQUIVALENT HEADWIND FORMULA...

WBAR = VGM - ((VCM+*2 + VARM/2.0) / (2.0 * ASPEED))

BUT NO FURTHER USE IS MADE OF WBAR.

THE GUANTITIES VGM. VCM AND VARM ARE MULTIPLIED BY THE SECTOR- OR LFG-LENGTH SNP. AND THE PRODUCT IS ACCUMULATED IN VGACC. VCACC, AND VACC.

THEN THE NEXT-POINT BECOMES THE CURRENT-POINT. A NEW NEXT-POINT IS CALCULATED. AND THE PROCESS IS REPEATED FOR THE NEXT LEG OF THE SIMULATED FLIGHT.

AFTER THE LAST LEG OF THE FLIGHT HAS BEEN PROCESSED. THE ACCUMULATORS VGACC. VCACC AND VACC ARE DIVIDED BY THE TOTAL ROUTE LENGTH. THE RESULTING DISTANCE-WEIGHTED ALONG-TRACK, CROSS-TRACK AND VARIANCE QUANTITIES ARE THEN USED IN THE SAWYER EQUIVALENT HEAD-WIND FORMULA GIVEN ABOVE TO OBTAIN THE DISTANCE-WEIGHTED ROUTE-MEAN WIND FACTOR WRARBR.

IF THE 90% WORST WIND FACTOR HAS BEEN SELFCTED.
WBARBR IS STATISTICALLY ADJUSTED TO THE 90% WORST
VALUE BY SAWYER'S TECHNIQUE. IMPLEMENTED IN PART IV
OF SUBROUTINE ENRWND.

AS PART OF THE WCAPUP ACTIONS IN PART VI OF SUBROU-TINE ENRWND. THE ROUTE-MEAN WIND FACTOR WHARBR IS ADDED TO THE AIR SPEED ASPEED TO GET A GROUND SPEED GSPEED FOR RETURN TO THE PROGRAM CALLING SUBROUTINE ENRWND.

THE METEOROLOGICAL TECHNIQUE USED IS REFERRED TO AS SAWYER'S EQUIVALENT HEADWIND TECHNIQUE AND IS DOCUMENTED IN AWS-TR-77-267, GUIDE FOR APPLIED CLIMATOLOGY.

BETA-ANGLE FORMAT ...

THE WIND DIRECTION DO CAN BE EXPRESSED IN THE FORM OF A BETA-ANGLE B...

THE BETA ANGLE DESCRIBES THE DIRECTION TOWARD WHICH THE WIND IS BLOWING IN TERMS OF RADIANS COUNTERCLOCKWISE FROM EASTWARD. CONVERSIONS ARE AS FOLLOWS...

نه يو**دور لود**ر در اد

259	C+				
260	C *		DIRECTION	BETA-ANGLE	BETA-ANGLE
261	C*		TOWARD WHICH	(DEGREES)	(RADIANS)
262	C *				
263	C*		300.0	-30.0	-0.524
264	C*		270.0	0.0	0.000
265	C *		240.0	30.0	0.524
266	C*		180.0	90.0	1.571
267	C*				
268	C*	GRID			
269	C*	SYSTEM-	THE GRID SYSTEM	IS IN GLOBAL (LA	TITUDE/LONGITUDE)
270	C*		COORDINATES. WIT	H A RESOLUTION O	F (15 DEG LAT X
271	C*		30 DEG LON). TH	E GRID SYSTEM EX	TENDS FROM 75 DEG
272	C *		N TO 60 DEG 5 (9	ROWS) AND GLOBA	LLY IN LONGITUDE
2 7 3	C *		(12 COLUMNS). H	ENCE. THERE ARE	108 GRID SECTORS.
274	C*		COLUMN 1 EXTENDS	FROM 30 DEG W T	O O DEG (GREEN-
275	C *		WICH), COLUMN 2	FROM O DEG TO 30	DEG E, ETC. ROW
276	C*		1 EXTENDS FROM 7	5 DEG N TO 60 DE	G N. ROW 2 FROM
277	C*		60 DEG N TO 45 D	EG N. ETC. SUCH	A GRID SYSTEM IS
278	C*		TOO COARSE FOR C	ALCULATION OF OP	ERATIONAL WIND
279	C*		FACTORS BUT IS S	UITABLE FOR PURP	OSES SUCH AS
280	C*		SIMULATION.		
281	C *				
282	C *	DATA			
283	C*	BASE-	THE SIOP WINDS W	ERE USED TO CREA	TE THE DATA BASE
284	C *		EMPLOYED BY SUBR		-
285	C*		A (5 DEG X 5 DEG		
286	C*				EG X 30 DEG) GRID
287	C*		SYSTEM WERE EQUA	LLY WEIGHTED AND	AVERAGED TO
288	C*		OBTAIN A SINGLE		
289	C*		SECTORS. TWO FLI	- • •	
290	C*		35,000 FT) AND F		
291	C #			· · · · ·	BASE. EACH HAS A
292	C *		WIND DIRECTION D		
293	C*		FORMAT). SPEED S	PD(NRND) (KNOTS)	. AND VARIANCE
294	C *		VAR(NRND) (KNOTS	**2). THESE WIN	IDS ARE STORED
295	C *		SEQUENTIALLY IN	THE FOLLOWING OR	RDER
296	C*				
297	C *		WINTER SEASON		
298	C*		FL 250		
299	C *		108 SEC	TORS	
300	C *		FL 350		
301	C *		108 SEC	_	
02د	C *		SPRING SEASON		
303	C *		FL 250		
304	C *		108 SEC	TORS	
305	C *		FL 350		
306	C*		108 SEC	TORS	
307	C*				
306	C*		ETC.		
309	C*		• • • •		
310	C*		THE WINDS ARE I	. THE ADDAME DID	
311	C*			N THE ARRAYS DIR	
312	C*			THESE ARRAYS ARE	MEMBERS OF THE
313	C*		LABELLED COMMON	BLUCK WEA	
314	C *		504404 4F54	270/0701 500/0	701 24040701
315	C*		CUMMUN /WEA/	DIR(870). SPD(8	70), VAR(870)
316	C*		AN INITIALIZADE	ROUTINE IS NEED	SEN TO BEAN THE
317 318	C *			AN 864-RECORD FI	
	C *			O ARRAYS. THIS	
319	C*				ALL TO SUBROUTINE
320	C*			S DELOKE LIKS! C	ALL TO SUBRUUTINE
321 322	C*		ENRWND.		
		LIMITATIONS-	DDESENTIV. THE M	IND FACTOR STMIN	ATION MODEL CAN-
323 324	C*	FIMILALIONS.	NOT PRODUCE A 'S		
325	C#				ANY GIVEN SEASON
326	C#		AND FOR ANY GIVE		
320	~ ~		HAD I ON MAIL GIVE	· HETETOPLE A FA	LOURN ROUTE

327	C*			LWAYS EXPERIENCE THE SAME WIND FACTOR. RE-
328	C+			SS OF THE PASSAGE OF TIME. REQUESTS FOR
329	C*			MULATED WIND WILL DEFAULT TO THE MEAN
330 331	C*		WIND.	
332	C*		FUETHE	RMORE. THE PRESENT MODEL IS INCAPABLE OF
333	C*			ING A 'FORECAST' WIND FACTOR. REQUESTS
334	C*			FORECAST WIND WILL DEFAULT TO THE MEAN
335	C*		WIND.	
336	C*			
337	C*		TEMPER	ATURE: AIRCRAFT PERFORMANCE: FUEL CONSUMP-
338	C*			AND OTHER FACTORS CONSIDERED BY TYPICAL
339	C*			PLANNING MODELS ARE NOT INCLUDED IN THE
340	C*		PRESEN	T MODEL. WHICH DEALS ONLY WITH WIND.
341	C*		005047	1000 NOOTH OF 36 NOS OD COUTH OF CO DEC
342 343	C*			IONS NORTH OF 75 DEG N OR SOUTH OF 60 DEG
344	C*		3 ARE	NOT PERMITTED.
345	C+		THE CO	ARSENESS OF THE PRESENT 15 DEG LATITUDE BY
346	C*			LONGITUDE GRID SYSTEM PRECLUPES USE OF
347	C*			DEL FOR CALCULATION OF OPERATIONALLY REALIS-
348	C*			ND FACTORS UNLESS CHANGES ARE MADE. RATHER
349	C *		SIMPLE	MODIFICATIONS TO THE EXISTING DATA BASE
35u	C *		AND GR	ID SYSTEM. ALONG WITH CORRESPONDING CHANGES
351	C *		TO THE	SOFTWARE, CAN ELIMINATE THIS LIMITATION.
352	C *			
353	C*			ICALLY, THE FOLLOWING RESTRICTIONS MUST BE
354	C*		ADHERE	D TD•••
J55	C+			NO COURT CHOIL O OF THOSE STORES OF THE
356 357	C* C*		۸.	NO ROUTE SHOULD BE FLOWN DIRECTLY OVER EITHER POLE.
356	C*			Cliner Pule.
359	C*		В.	NEITHER POLE SHOULD SERVE AS A POINT 'A'
360	C*			(TAKEOFF) OR A POINT 'B' (LANDING).
361	C*			
362	C*		C •	CIRCUMFERENTIAL OR ROUND ROBIN FLIGHTS IN
363	C*			WHICH POINT 'A' AND 'R' COINCIDE WILL BE
364	C*			ABORTED. BREAK SUCH FLIGHTS INTO SMALLER
365	C*			SEGMENTS.
366	C*		_	
367	C*		D.	SEMI-CIRCUMFERENTIAL FLIGHTS IN WHICH POINT
368 369	C*			'B' IS EXACTLY OPPOSITE POINT 'A' THROUGH THE CENTER OF THE EARTH WILL ALSO ABORT.
370	C*			BREAK SUCH FLIGHTS INTO SMALLER SEGMENTS.
371	C*			DRUM SOUN FEIGHTS INTO SMACLER SEGMENTON
372	C*		€.	ROUTES OR SEGMENTS OF ROUTES FLOWN DIRECTLY
373	C*			NORTH OR DIRECTLY SOUTH ALONG A LONGITUDE
374	C*			LINE WILL ALSO ABORT.
375	C*			
376	C *		F.	AT PRESENT. THE MODEL ALLOWS FLIGHTS ONLY
377	C*			AT ALTITUDES 25,000 FT AND 35,000 FT.
378	C *		_	ALL DEDARTING AND DESTRUCTION SOUNTS HUST
379 380	C *		G.	ALL DEPARTURE AND DESTINATION POINTS MUST LIE WITHIN THE LATITUDINAL RANGE FROM 75
381	C*			DEG N TO 60 DEG S.
382	C*			DEG 14 10 00 DEG 31
383	C*		RESTRI	CTIONS F AND G WERE IMPOSED IN ORDER TO RE-
384	C*			HE CORE STORAGE REQUIREMENTS OF THE MODEL.
385	C*			
366	C*	REFERENCES-		ITON. R. C., AND P. L. HEROD. 1980: WIND FACTOR
387	C *		SI	MULATION MODEL: MODEL DESCRIPTION, USAFETAC/TN-80/001.
388	C*			
389	C*		, u-	DOD D . AND D C SUTTON 1000. HIND PACTOD
390 391	C *			ROD. P. L AND R. C. PHITON, 1980: WIND FACTOR MULATION MODEL: USER'S MANUAL, USAFETAC/TN-80/002
392	C+		31	MULTITUE MODEL. OSEN S MARONE, OSMITTAC HE-OUT OUT.

```
393
         C *
              INPUT-
                             FRALAT & LATITUDE OF POINT 'A' (TAKEOFF) IN
394
         C *
395
         C*
                                      DECIMAL DEGREES. NEGATIVE SOUTH
                             FRMLNG = LONGITUDE OF POINT 'A' (TAKEOFF) IN
396
         C*
                                      DECIMAL DEGREES, NEGATIVE EAST
397
         C *
398
         C*
                             TOLAT = LATITUDE OF POINT 'B' (LANDING) IN
                                      DECIMAL DEGREES. NEGATIVE SOUTH
399
         C *
                             TOLNG = LONGITUDE OF POINT 'B' (LANDING) IN
400
         C *
401
         C *
                                      DECIMAL DEGREES, NEGATIVE EAST
402
         C*
                             JULDAT . JULIAN BASE DATE OF WIND FACTOR RE-
403
         C*
                                      QUEST. INTEGER. VALUES 1 - 366
                                    * GREENWICH BASE TIME OF WIND FACTOR
                             GMT
404
         C *
405
         C *
                                      REQUEST. VALUE 0.0 - 24.0 HRS
406
         C *
                             FCHRS - FORECAST HOURS AHEAD. VALUE GREATER
                                      THAN OR EQUAL TO 0.0 HRS
407
         C *
         C*
                             IALT
                                    = ALTITUDE INDEX, 1 FOR 25,000 FT AND
408
         C*
                                      2 FOR 35.000 FT
409
                             IOPTN * WIND OPTION OR MODE. INTEGER. O FOR
410
         C *
                                       CALM WIND. 2 FOR 90% WORST WIND. AND
411
         C*
         C*
                                       3 FOR MEAN WIND. IN THE FUTURE.
412
                                      WILL BE IMPLEMENTED AS THE SIMULATED
         C*
413
                                       WIND BUT PRESENTLY DEFAULTS TO THE
414
         C *
         C*
                                      MEAN WIND
415
                             ASPEED = ROUTE-MEAN AIRCRAFT AIR SPEED IN KNOTS
416
         C *
417
         C *
416
         C*
             BUTPUT-
                             GSPEED = ROUTE-MEAN AIRCRAFT GROUND SPEED IN
419
         C*
                                       KNOTS
420
         C *
421
         C *
              SYSTEM SUB-
422
         C*
             PROGRAMS
         C*
             USED-
                             SORT. SIN. CDS. FXEM
423
424
         C *
425
         C *
             USER SUB-
426
         C*
             PROGRAMS
427
         C*
              USED-
                             GRTCIR. DISTAN. SPHGLO. HDG. ARLAT. BRLNG
428
         C *
         C*
             ESTIMATED
429
                             A LONG ROUTE CONSISTING OF 8 LEGS AND REQUIRING
430
         C*
             CPU TIME-
431
         C *
                             AN EQUATOR CROSSING TAKES 0.1 - 0.5 SEC CPU TIME
                             ON A HONEYWELL 6080 COMPUTER.
432
         C *
433
         C*
434
         C*
              STORAGE
435
         C *
             REQUIREMENTS- PROCEDURE PLUS DATA OCCUPY 1130 WORDS OF CORE
                             STORAGE. COMMON BLOCK /WEA/ ADDS 2610 WORDS.
436
         C *
                             TOTAL CORE IS 3740 WORDS FOR THIS SUBROUTINE.
437
         C *
438
         C *
             PROGRAM
434
         C *
440
         C*
              UPDATES-
                             NONE
441
         C *
         442
443
         C
444
               COMMON /WEA/ DIR(870), SPD(870), VAR(870)
445
         c
               COMMON /DBG/ NDEBUG
446
         c
447
               DESCRIPTION OF SPHERICAL GRID. LATITUDE GRID LINES ARE SPACED
         c
               EVERY DELTLA DEGREES OF LATITUDE. LONGITUDE GRID LINES ARE
448
         c
                SPACED EVERY DELTLO DEGREES OF LONGITUDE.
449
         c
450
         C
451
               DATA DELTLA/15.0/. DELTLO/30.0/
452
               ANGLE CONVERSION FACTORS. MULTIPLIER DTOR CONVERTS DEGREES TO
453
         C
                RADIANS. RIOD CONVERTS RADIANS TO DEGREES.
454
         c
455
         C
456
               DATA DTOR/0.01745329/, RT0D/57.295780/
457
         c
458
               LEGMAX IS MAXIMUM PERMITTED NUMBER OF LEGS IN ROUTE. USED TO
         c
459
         c
                DETECT RUNAWAY ROUTES.
460
         c
```

many see marks before

```
461
               DATA LEGMAX/50/
462
         C
463
         c
464
         C
                                            PART I
         c
465
                                             BRANCH
466
         C
467
         c
         c
46B
               BRANCH TO APPROPRIATE PART OF SUBROUTINE, BASED ON VALUE OF IOPTN
469
         c
                FLAG.
470
         c
471
         c
                    IOPTN
                                FUNCTION
                                                          SUBROUTINE PARTS
472
         c
473
         c
                     0
                                CALM WIND
                                                          PART II
474
         c
                                SIMULATED WIND
                                                          PART V
                     1
475
         c
                                90% WORST WIND
                                                          PARTS III & IV
                     2
476
         c
                                MEAN WIND
                                                          PART III
477
         c
478
         c
               NOTE THAT PREPARATION OF THE 90% WORST WIND REQUIRES HAVING PRE-
479
         c
                VIOUSLY ESTABLISHED THE MEAN WIND.
460
         c
481
               NOTE THAT IN THIS VERSION OF THE SUBROUTINE. THE SIMULATED WIND
         c
482
         c
                OPTION IS NOT OPERATIONAL. CALLS FOR THE SIMULATED WIND WILL DE-
                FAULT TO THE MEAN WIND.
483
         c
484
         c
485
               IF (IOPTN .LT. O .OR. IOPTN .GT. 3) GO TO 7020
               IOPTNP = IOPTN + 1
486
487
               GO TO (2000, 5000, 3000, 3000), IOPTNP
488
         c
489
                             **********************
         c
                                           PART II
490
         c
491
         c
                                          CALM WIND
492
                             *************
         c
493
         C
               IN THE CALM WIND CASE. THE WIND FACTOR IS ZERO. AND GROUND SPEED
494
         C
495
         c
                IS EQUAL TO AIR SPEED IN KNOTS. ROUTE-AVERAGED WIND FACTOR WBARBR
496
         c
                IS ZFRQ.
497
         C
496
          2000 WBARBR = 0.0
494
         c
               GO TO WRAPUP AND TERMINATION.
500
         C
501
         c
502
               GO TO 6000
503
         C
504
505
         c
                                           PART III
506
         C
                                          MEAN WIND
                             ************
507
         c
508
         C
               INITIALIZE ACCUMULATORS FOR DISTANCE (SACC). VARIANCE (VACC).
509
         c
                ALONG-TRACK WIND COMPONENT (VGACC), AND CROSS-TRACK WIND
         c
510
                COMPONENT (VCACC).
511
         c
512
         C
د 51
          3000 SACC = 0.0
               VACC = 0.0
514
515
               VGACC = 0.0
516
               VCACC = 0.0
517
         c
               INITIALIZE LAST-LEG FLAG LASTLG. WHEN THE CURRENT LEG OF THE
518
         c
519
         c
                FLIGHT IS THE LAST LEG. LASTLG = 1.
         c
520
521
               LASTLG = 0
         c
522
               TEST POSITION OF POINT 'A' (FRMLAT.FRMLNG) AND POINT 'B' (TOLAT.
523
         c
                TOLNG) FOR LEGAL PANGE OF VALUES IN DEGREES.
524
         c
525
               IF (FRMLAT .LT. -90.0 .OR. FRMLAT .GT. 90.0) G0 TC 7030
IF (TOLAT .LT. -90.0 .OR. TOLAT .GT. 90.0) G0 TO 7030
526
527
                IF (FRMLNG .LT. -180.0 .DR. FRMLNG .GT. 180.0) GD TC 7030
528
```

and the same of the same of

```
529
                IF (TOLNG .LT. -180.0 .OR. TOLNG .GT. 180.0) GO TO 7030
530
                INITIALIZE INTERMEDIATE POINT COORDINATES.
531
532
                XLATC = 0.0
XLNGC = 0.0
533
534
535
                THETAC = 0.0
536
                PHIC = 0.0
537
         C
538
                INTERPRET THE JULIAN DATE JULDAT IN TERMS OF SEASON OF THE YEAR.
                 INDICATED BY THE SEASON INDEX ISEASN. GIVE AN ERROR CONDITION
539
         c
540
         C
                 FOR ILLEGAL JULDAT VALUES.
541
542
         c
                    JULIAN DATES
                                            SEASON
                                                             SEASON INDEX
                       JULDAT
543
         c
                                           OF YEAR
                                                                ISEASN
544
545
         C
                            59
                                            WINTER
                                                                  1
                      60 - 151
546
         c
                                            SPRING
                                                                  2
547
         C
                     152 - 243
                                            SUMMER
                                                                  3
548
                     244 - 334
         c
                                            FALL
                                                                  4
549
                     335 - 366
         C
                                            WINTER
                                                                  1
550
         C
551
                IF (JULDAT .GT. 366) GO TO 7000
                IF (JULDAT .GE. 335) GO TO 3065
552
553
                IF (JULDAT .GE. 244) GO TO 3050
               IF (JULDAT .GE. 152) GO TO 3055
IF (JULDAT .GE. 60) GO TO 3060
554
555
556
                IF (JULDAT .GE. 1) GO TO 3065
557
                GO TO 7000
558
          3050 ISEASN = 4
559
                GO TO 3070
560
          3055 ISEASN = 3
                GO TO 3070
561
562
          3060 ISEASN = 2
563
               GO TO 3070
564
          3065 [SEASN = 1
565
               GO TO 3070
566
                THECK ALTITUDE OPTION TALT FOR LEGAL RANGE.
567
         C
568
         c
                                               AIRCRAFT ALTITUDE
                            TALT
569
         C
570
         c
571
         C
                              1
                                                   25,000 FT
                                                   35,000 FT
572
                              2
         c
573
574
          3070 IF (IALT .LT. 1 .OR. IALT .GT. 2) GO TO 7010
575
         c
                CALCULATE TOTAL GREAT CIRCLE DISTANCE STOT IN NAUTICAL MILES BE-
576
         c
577
         c
                 TWEEN POINTS 'A' AND 'B.'
578
         c
579
                STOT = 0.0
580
                CALL DISTAN (FRMLAT, FRMLNG, TOLAT, TOLNG, STOT)
581
         c
                INITIALIZE GREAT CIRCLE SUBROUTINE. NOTE THAT GRTCIR IS
582
         C
                 CALLED TWICE--ONCE FOR ICONV = 1 AND ONCE FOR ICONV = 2.
583
         c
584
                ICONV =
585
566
                IGUFSS = 0
587
                XLNGG = 0.0
588
                XEAST = 0.0
589
                XNORTH = 0.0
                XLATC = 0.0
590
                XLNGAP = 0.0
591
                SAPRIM = 0.0
592
          3075 CALL GRICIR (ICONV. FRMLAT. FRMLNG. TOLAT. TOLNG. XLATC. XLNGC.
593
                 THETAA, PHIA. THETAB, PHIB. QTX. QTY. QTZ. IGUESS. XLNGG.
594
                 XEAST, XNORTH, XLNGAP, SAPRIM, XLATC, THETAC, PHIC)
595
         8
596
                IF (ICONV .EQ. 2) GO TO 3080
```

The state of the s

```
597
               ICONV = 2
598
               GO TO 3075
599
600
               SET THE LOCATION (XLATC, XLNGC) OF THE CURRENT-POINT TO POINT
601
         c
                 *A* (FRMLAT, FRMLNG). THIS ROUTINE OPERATES WITH TWO PRINCIPAL
                POINTERS, NAMELY THE CURRENT-POINT (XLATC, XLNGC) AND THE NEXT-
602
         c
                POINT (XLATNP. XLNGNP). COMPUTATIONS IN THIS SUBROUTINE ARE
603
604
         C
                PRIMARILY IN TERMS OF LATITUDE AND LONGITUDE. SOME LIMITED
605
                USE OF COLATITUDE (THETA) AND AZIMUTH (PHI) IS MADE BY
606
         C
                SUBROUTINE GRTCIR, SO THESE QUANTITIES (THETAC, PHIC) ARE
                MAINTAINED FOR THE CURRENT-POINT (XLATC, XLNGC).
607
         r
608
609
          3080 XLATC = FRMLAT
               XLNGC = FRMLNG
610
611
               ICONVX = 1
612
               CALL SPHGLO (ICONVX. XLATC, XLNGC, THETAC, PHIC)
613
         c
614
               INITIALIZE THE LEG COUNTER LEGNO. WHICH IS UNITY FOR THE FIRST
615
         c
                LEG OF THE FLIGHT.
616
         c
617
               LEGNO = 1
         c
618
               IF (NDEBUG .GT. 0) WRITE (6.8000)
         C8000 FORMAT (1HO, T8, 'CURR PT', T21, 'NEXT PT', T34, 'DISTANCE', T44,
619
                'SEC-', T50, 'ACFT', T55, '------WIND-----'/1X,
620
         C
621
         c
                'LG', T7. 'LAT',
622
                T14, 'LNG', T20, 'LAT', T27, 'LNG', T33, 'NAUT MILES', T44,
623
                'TOR', T51, 'HDG', T58, 'DIR', T64, 'SPD', T70, 'VAR', T74,
         c
624
         c
                'FACTOR'//)
625
626
         c
               BEGIN NAVIGATION LOOP.
627
         c
628
               BASED ON A GREAT CIRCLE BETWEEN THE CURRENT-POINT AND POINT 'B. .
         C
629
                CALCULATE THE AIRCRAFT'S HEADING HDGC AT THE CURRENT-POINT.
630
                HEADING IS THE DIRECTION TOWARD WHICH IN DEGREES. O.O FOR NORTH-
631
         c
                WARD. 90.0 FOR EASTWARD. 180.0 FOR SOUTHWARD. AND 270.0 FOR
632
         c
                WESTWARD.
633
         C
634
          3100 HDGC = HDG (XLATC, XLNGC, TOLAT, TOLNG)
635
636
               BASED ON THE HEADING HOGC AT THE CURRENT-POINT. DETERMINE THE
637
         C
                EASTWARD DIRECTION INDICATOR XEAST (POSITIVE FOR EASTWARD
638
                COMPONENT OF AIRCRAFT MOTION) AND NORTHWARD DIRECTION INDI-
639
                CATOR XNORTH (POSITIVE FOR NORTHWARD COMPONENT OF AIRCRAFT
640
         c
                MOTION). SPECIAL CASES OF CARDINAL HEADINGS ARE HANDLED BY
641
                STATEMENTS 3110 THROUGH 3137. WHILE GENERAL CASES ARE HANDLED
         c
642
                BY 3140 THROUGH 3167.
643
644
          3110 IF (HDGC .EQ.
                               0.0 .OR. HDGC .EQ. 360.0) GO TO 3120
645
               IF (HDGC .Eg. 90.0) GD TO 3125
646
               IF (HDGC .EQ. 180.0) GO TO 3130
647
               IF (HDGC .EQ. 270.0) GO TO 3135
               GO TO 3140
648
649
          3120 XEAST = 0.0
650
               XNORTH = 1.0
651
               GO TO 3170
652
          3125 XEAST = 1.0
653
               XNORTH = 0.0
654
               GO TO 3170
655
          3130 XEAST = 0.0
656
               XNDRTH =-1.0
657
               GO TO 3170
658
          3135 XEAST #-1.0
659
               XNORTH = 0.0
660
          3137 GO TO 3170
661
          3140 IF (HDGC .LT. 90.0) GD TO 3150
662
               IF (HDGC .LT. 180.0) GO TO 3155
663
               IF (HDGC .LT. 270.0) GO TO 3160
               GO TO 3165
664
```

... ashaere

```
3150 XEAST = 1.0
XNORTH = 1.0
665
666
667
               GO TO 3170
668
          3155 XEAST = 1.0
               XNORTH = -1.0
669
670
               GO TO 3170
671
          3160 XEAST = -1.0
               XNORTH = -1.0
672
673
               GO TO 3170
674
          3165 XEAST = -1.0
675
          3167 XNORTH = 1.0
676
          3170 CONTINUE
677
               IF (NDEBUG .GT. 1) WRITE (6,8010) XEAST. XNORTH
678
         C8010 FORMAT (1H . T4. 'XEAST.XNORTH = ', T36. 2F10.4)
679
680
               BASED ON EASTWARD DIRECTION INDICATOR, CALCULATE THE POINT OF NEXT
681
                LONGITUDE CROSSING (XLNGNX) AND ASSOCIATED LATITUDE (XLATAS) DE-
                TERMINED FROM THE EQUATION OF A GREAT CIRCLE. THIS IS CANDIDATE
682
683
                POINT #1. STATEMENTS 3200-3299. DIFFERENT PROCEDURE IS USED.
                DEPENDING ON WHETHER THIS IS THE FIRST LEG OF THE FLIGHT OR
684
                WHETHER (ON SUBSEQUENT LEGS) THE CURRENT-POINT WAS CANDIDATE #1
685
686
                (NCAND = 1) OR CANDIDATE #2 (NCAND = 2).
687
688
          3200 IF (LEGNO .GT. 1) GO TO 3240
689
690
               PROCEDURE FOR FIRST LEG OF FLIGHT. DETERMINE BRACKETING LONGI-
691
                TUDE VALUES. MOVE EAST (DECREASING LONGITUDE) IF XEAST .GT.
                0.0. SET XLNGNX.
692
693
694
          3210 CALL BRUNG (XLNGC. XLNGLD. XLNGHI)
               IF (NDEBUG .GT. 1) WRITE (6,8020) XLNGLO, XLNGHI
695
696
         C8020 FORMAT (1H . T4. *XLNGLO.XLNGH[ = *, T36, 2F10.4)
697
               IF (XEAST) 3220,3220,3230
698
          3220 XLNGNX = XLNGHI
699
               GO TO 3290
700
          3230 XLNGNX = XLNGLD
701
               GD TO 3290
702
         C
703
               PROCEDURE FOR SUCCEEDING LEGS DEPENDS ON WHETHER CANDIDATE #1 OR
                CANDIDATE #2 WAS CHOSEN LAST TIME.
704
705
70€
          3240 GO TO (3250.3270). NCAND
707
               IF CURRENT-POINT WAS A CANDIDATE #1 (EXACT LONGITUDE). THEN NEXT
708
709
                LONGITUDE CROSSING IS THAT LONGITUDE PLUS OR MINUS DELTA-LONGI-
710
                TUDE (PLUS FOR WESTWARD, MINUS FOR EASTWARD).
711
712
          3250 XLNGNX = -(XEAST * DELTLO) + XLNGC
713
               ADJUST LONGITUDE FOR DATELINE FOLD.
714
715
716
               IF (XLNGNX .GT. 180.0) GD TD 3260
717
               IF (XLNGNX .LT. -180.0) GO TO 3265
718
               GO TO 3290
719
          3260 XLNGNX = XLNGNX - 360.0
               GO TO 3290
720
721
          3265 XLNGNX = XLNGNX + 360.0
722
               GO TO 3290
723
         c
               IF CURRENT-POINT WAS A CANDIDATE #2 (INEXACT LONGITUDE). THEN
724
                NEXT LONGITUDE CROSSING MUST BE FOUND BY THE BRACKETING METHOD
725
726
                USED FOR LEGNO = 1.
727
728
          3270 GD TD 3210
729
730
               SET ASSOCIATED LATITUDE (XLATAS).
731
          3290 ICONV = 3
```

```
CALL GRTCIR (ICONV. FRMLAT. FRMLNG. TOLAT. TOLNG. XLATAS, XLNGNX.
733
734
         R
                THETAA, PHIA, THETAB, PHIB, QTX, QTY, QTZ, IGUESS, XLNGG,
735
                XEAST. XNORTH. XLNGAP. SAPRIM. XLATC. THETAC. PHIX)
736
               IF (NDEBUG .GT. 1) WRITE (6,8030) XLATAS, XLNGNX
         •
737
         CB030 FORMAT (1H , T4, 'XLATAS, XLNGNX = ', T36, 2F10.4)
738
         c
739
               BASED ON NORTHWARD DIRECTION INDICATOR. CALCULATE THE POINT OF
         C
740
         c
                NEXT LATITUDE CROSSING (XLATNX) AND ASSOCIATED LONGITUDE
741
         c
                (XLNGAS) DETERMINED FROM THE FQUATION OF A GREAT CIRCLE.
                IS CANDIDATE POINT #2. STATEMENTS 3300-3399. DIFFERENT PRO-
742
         c
743
         c
                CEDURE IS USED. DEPENDING WHETHER THIS IS FIRST LEG OF FLIGHT
744
         c
                OR WHETHER (ON SUBSEQUENT LEGS) THE CURRENT-POINT WAS A
                CANDIDATE #1 (NCAND = 1) OR A CANDIDATE #2 (NCAND = 2).
745
         C
746
         C
747
               FIRST SET COUNTER OF 'GRTCIR' CONVERGENCE FAILURES TO ZERO.
                THIS WILL LATER BE USED TO REVERSE THE LATITUDE SEARCH.
748
         C
749
         C
750
          3300 NFAIL = 0
751
               DISCRIMINATE FIRST FROM SUBSEQUENT LEGS.
752
753
754
          3310 IF (LEGNO .GT. 1) GO TO 3340
755
         C
756
         c
               PROCEDURE FOR FIRST LEG. DETERMINE BRACKETING LATITUDE VALUES.
                MOVE NORTH (INCREASING LATITUDE) IF XNORTH .GT. 0.0. SET
757
         c
                XLATNX.
758
         c
759
760
         3315 CALL BREAT (XLATC. XLATEO, XLATHI)
               IF (NDEBUG .GT. 1) WRITE (6,8040) XLATLO. XLATHI
761
762
         CB040 FORMAT (1H . T4. 'XLATLO.XLATHI = ', T36. 2F10.4)
763
               IF (XNORTH) 3320.3320.3330
764
          3320 XLATNX = XLATLO
765
               GO TO 3390
766
          3330 XLATNX = XLATHI
767
               GO TO 3390
708
         C
               PROCEDURE FOR SUCCEEDING LEGS DEPENDS ON WHETHER CANDIDATE #1 OR
769
         c
770
         C
                CANDIDATE #2 WAS CHOSEN LAST TIME.
771
         c
772
          3340 GO TO (3350,3370), NCAND
773
         c
               IF CURRENT-POINT WAS A CANDIDATE #1 (INEXACT LATITUDE). THEN NEXT
774
         C
775
         c
                LATITUDE CROSSING MUST BE FOUND BY THE BRACKETING METHOD USED FOR
776
         C
                LEGNO = 1.
777
778
          3350 GO TO 3315
779
         c
780
               IF CURRENT-PJINT WAS A CANDIDATE #2 (EXACT LATITUDE). THEN NEXT
         c
781
         c
                LATITUDE CROSSING IS THAT LATITUDE PLUS OR MINUS DELTA-LATITUDE
                (PLUS FOR NORTHWARD, MINUS FOR EASTWARD).
782
783
         C
784
          3370 XLATNX = (XNORTH * DELTLA) + XLATC
IF ( ABS(XLATNX) •LE• 0•001 ) XLATNX = 0•0
785
786
         c
767
               ADJUST LATITUDE FOR POLAR SINGULARITY.
788
789
               IF (XLATNX .GT. 90.0) GO TO 3375
790
               IF (XLATNX .LT. -90.0) GO TO 3380
791
               GO TO 3390
792
          3375 XLATNX = 180.0 - XLATNX
793
               GD TO 3390
794
          3380 XLATNX = -180.0 - XLATNX
795
               GO TO 3390
796
         C
797
               ATTEMPT TO SET ASSOCIATED LONGITUDE (XLNGAS).
798
         C
          3390 ICONV = 5
799
800
               IF (NDEBUG .GT. 1) WRITE (6.8050) XLATNX
```

```
801
         C8050 FORMAT (1H . T4. 'XLATNX
                                                = '. T36. F10.4)
802
               CALL GRICIR (ICONY, FRHLAT, FRHLNG, TOLAT, TOLNG, XLATNX,
                XLNGAS. THETAA, PHIA. THETAB. PHIB. UTX. OTY. QTZ.
803
804
                IGUESS, XLNGG, XEAST, XNORTH, XLNGAP, SAPRIM, XLATC, THETAX,
805
                PHIC)
806
807
               RESCUE PHIC FOR LATER USE.
808
809
               ICONVX = 1
810
               CALL SPHGLO (ICONVX. XLATC. XLNGC. THETAC. PHIC)
811
               IF (NDEBUG .GT. 1) WRITE (6.8060) ICONV
812
         C8060 FORMAT (1H . T4. 'ICONV
                                                = '. T36. I10)
               IF (NDEBUG .GT. 1) WRITE (6.8070) XLNGG
813
         •
814
         C8070 FORMAT (1H . T4. 'FIRST GUESS LONGITUDE = '. T36. F10.4)
815
               IF (NDEBUG .GT. 1) WRITE (6.8090) XLATNX. XLNGAS
         CB080 FORMAT (1H , T4, 'XLATNX, XLNGAS = 1, T36, 2F10.4)
816
817
818
               IF 'GRTCIR' SUBROUTINE FAILS TO CONVERGE IN LONGITUDE, INCREMENT
                FAILURE COUNTER BY ONE. REVERSE LATITUDE SEARCH DIRECTION. AND
619
620
                TRY AGAIN TO DETERMINE THE NEXT LATITUDE CROSSING (XLATNX) AND
021
                ASSOCIATED LONGITUDE. OTHERWISE. CONTINUE. TWO CONSECUTIVE
                FAILURES PRODUCE AN ERROR ABORT.
822
         c
623
         c
624
               IF (ICONV .NE. 11) GO TO 3400
825
               NFAIL = NFAIL + 1
826
               IF (NFAIL .GT. 1) GO TO 7040
827
               HTRONX- = HTRONX
               IF (NDEBUG .GT. 1) WRITE (6,8090) XNORTH
828
         C8090 FORMAT (1H . T4. 'REVERSED XNORTH = '. T36. F10.4)
829
630
               GO TO 3310
831
332
               CALCULATE GREAT CIRCLE DISTANCE (GCD) SI FROM CURRENT-POINT
         c
833
         c
                (XLATC.XLNGC) TO CANDIDATE #1 (XLATAS.XLNGNX). CALCULATE
                GCD S2 FROM CURRENT-POINT TO CANDIDATE #2 (XLATNX, XLNGAS).
034
835
         C
b36
          3400 CALL DISTAN (XLATC, XLNGC, XLATAS, XLNGNX, S1)
637
               CALL DISTAN (XLATC. XLNGC. XLATNX. XLNGAS. S2)
838
         c
€39
         c
               WHICHEVER OF THE TWO POINTS, CANDIDATES 1 OR 2. IS CLOSEST TO THE
                CURRENT-POINT IS SELECTED AS THE NEXT-POINT (XLATNP.XLNGNP)
840
                ALONG THE PATH. DECISION IS MADE ON THE BASIS OF GCD S1 FOR CAN-
841
842
                DIDATE POINT #1 AND S2 FOR CANDIDATE POINT #2.
643
         C
844
               IF (S2 - S1) 3420,3420,3430
845
               CASE OF S1 .GE. S2 ... CHOOSE CANDIDATE #2.
846
547
645
          3420 NCAND
349
               XLATN = XLATNP
650
               XLNGN = XLNGNP
o 5 1
               XLATNP = XLATNX
352
               XLNGNP = XLNGAS
               SNP
853
                      = S2
854
               GO TO 3450
855
         C
856
               CASE OF 52 .GE. S1 ... CHOOSE CANDIDATE #1.
         c
857
         C
558
          3430 NCAND = 1
859
               XLATN
                      = XLATNP
               XLNGN = XLNGNP
860
861
               XLATNP = XLATAS
862
               XLNGNP = XLNGNX
               SNP
                      = S1
163
864
865
               NOTE ... (XLATN.XLNGN) IS CROSSING POINT BEFORE NEXT-POINT.
866
               CALCULATE GREAT CIRCLE DISTANCE (GCD) SNEXT IN NAUTICAL MILES
867
                FROM POINT 'A' (FRMLAT, FRMLNG) TO THE NEXT-POINT (XLATNP,
868
```

```
XLNGNP) JUST SELECTED. IF THAT DISTANCE (SNEXT) IS GREATER
869
                THAN THE TOTAL GCD (STOT) BETWEEN 'A' AND 'B,' THEN THE NEXT-
870
         C
                POINT IS BEYOND THE TERMINATION-POINT 'B. ' IN SUCH A CASE.
871
                THE COORDINATES OF 'B' MUST BE USED AS THE LAST-POINT
872
         c
873
         c
                (XLATNP, XLNGNP). DISTANCE SNP MUST BE ADJUSTED. AND LAST-LEG
874
                FLAG MUST BE TURNED ON.
875
         c
876
          3450 SNEXT = 0.0
877
         c
               IF (NDEBUG .GT. 1) WRITE (6,8100) NCAND, XLATNP, XLNGNP
         C8100 FORMAT (1H , T4, 'NCAND, XLATNP, XLNGNP = '. T36, I10, 2F10.4)
678
879
               CALL DISTAN (FRMLAT, FRMLNG, XLATNP, XLNGNP, SNEXT)
880
               IF (STOT - SNEXT) 3460.3500.3500
881
         C
               PROCEDURE FOR SNEXT .GT. STOT.
682
883
884
          3460 LASTLG = 1
885
               XLATNP = TOLAT
               XLNGNP = TOLNG
686
687
               CALL DISTAN (XLATN, XLNGN, TOLAT, TOLNG, SNP)
888
               FIND APPROXIMATE MIDPOINT BETWEEN CURRENT-POINT (XLATC.XLNGC)
889
         C
                AND NEXT-POINT (XLATNP, XLNGNP). THIS MIDPOINT IS LATER USED
890
         C
891
                TO DETERMINE GRID SECTOR NUMBER NSEC AND AS POSITION FOR
692
                COMPUTATION OF AIRCRAFT HEADING HDGM.
         C
5 Q 3
         C
694
          3500 \text{ XLATM} = 0.5 * (XLATC + XLATNP)
895
               XLNGM = 0.5 * (XLNGC + XLNGNP)
396
         C
897
         c
               FIND ROW NUMBER NROW (LATITUDE COUNTER) AND COLUMN NUMBER NCOL
898
                (LONGITUDE COUNTER) OF MIDPOINT. THEN USE NROW AND NCOL TO
         c
399
         c
                COMPUTE SECTOR NUMBER NSEC IN WHICH THE MIDPOINT (XLATM.
900
                XLNGM) LIES. IF POINT LIES OUTSIDE PLUS OR MINUS 75.0 DEGREES
         C
901
         Ç
                LATITUDE LIMITS OF THE GRID SYSTEM. BOGUS THE POINT INTO THE
902
                SYSTEM.
903
         c
904
               XLATDM = XLATM
905
               IF (XLATDM .GT. 75.0) XLATDM = 75.0
906
               IF (XLATDM \bulletLT\bullet -60\bullet0) XLATDM = +60\bullet0
               ANGLE = 75.0 - XLATOM
907
908
               NROW
                      = (ANGLE / DELTLA) + 1
909
                      = -XLNGM + 30.0
               ANGLE
910
               IF (XLNGM .GT. 0.0) ANGLE = 390.0 - XLNGM
911
               NCOL
                     = (ANGLE / DELTLO) + 1
912
               IF (NCOL .GT. 12) NCOL = NCOL - 12
                     = ((NROW + 1) + 12) + 1 + (NCOL + 1)
913
               NSEC
y14
915
               CALCULATE DATUM NUMBER NRND BASED ON SECTOR NUMBER NSEC
916
                (1-108), AIRCRAFT ALTITUDE TALT (1-2) AND SEASON INDEX
         C
917
         C
                ISEASN (1-4).
918
         c
919
               NRND = (ISEASN - 1) * 2 * 108 + (IALT - 1) * 108 + NSEC
         c
420
921
         C
               CALCULATE AIRCRAFT HEADING HDGM (DIRECTION TOWARD WHICH IN
922
               DEGREES) AT THE MIDPOINT 'M.
923
         c
924
               HDGM = HDG (XLATM, XLNGM, TOLAT, TOLNG)
925
         C
               CONVERT HEADING IN DEGREES TO ANGLE ALPHA IN RADIANS.
926
                                                                       ALPHA
                IS THE DIRECTION TOWARD WHICH THE AIRCRAFT'S GROUND TRACK IS
         C
927
928
         c
                INCLINED. IN RADIANS COUNTERCLOCKWISE FROM EASTWARD.
929
930
               ALPHA = 90.0 - HDGM
931
               IF (ABS(HDGM) - 180.0) 3560,3560,3550
932
          3550 ALPHA = 360.0 + ALPHA
933
          3560 ALPHA = DTOR * ALPHA
934
         c
               RETRIEVE DIRECTION DIRM AND SPEED SPDM TOWARD WHICH THE WIND IS
9.35
         C
                BLOWING AT THE MIDPUINT POSITION (XLATM.XLNGM). DIRECTION IS
936
```

```
937
                 IN RADIANS COUNTERCLOCKWISE FROM EASTWARD (E.G.. WIND FROM 225
 938
                 DEGREES HAS DIRM = +PI/4 = 0.78540). SPEED IS IN KNOTS. ALSO
                 RETRIEVE VECTOR STANDARD VARIANCE VARM (SQUARE OF VECTOR STAN-
939
          C
 940
          c
                 DARD DEVIATION) IN UNITS OF KNOTS##2.
 941
 942
                DIRM = DIR(NRND)
 943
                SPDM = SPD(NRND)
 944
                VARM = VAR(NRND)
 945
          c
                COMPUTE ALONG-GROUND-TRACK WIND COMPONENT VGM AND CROSS-GROUND-
946
          c
947
          c
                  TRACK WIND COMPONENT VCM IN KNOTS.
 948
949
                GAMMA = DIRM - ALPHA
950
                GAMMAA =
                           ABS (GAMMA)
 951
                VGM
                        = SPDM * CDS(GAMMAA)
 952
                           SPDM * SIN(GAMMA )
                VCM
                        =
          c
954
                COMPUTE TIME-AVERAGED WIND FACTOR WBAR IN KNOTS FOR THE
          C
955
          c
                 PRESENT LEG.
 956
          c
957
                WBAR = VGM = ((VCM*VCM + (VARM/2.0)) / (2.0*ASPEED))
          c
                IF (NDEBUG .GT. 0) WRITE (6.8110) LEGNO. XLATC. XLNGC. XLATNP.
958
 959
                 XLNGNP, SNP, NSEC, HDGM, DIRM, SPDM, VARM, WBAR
          C
          Cd110 FORMAT (1H ,12,2(F6.1,F7.1),T33,F8.2,T42,I4,1x,2F7.3,F6.1,
960
961
          C
                 F6.0, F7.1)
 962
          c
963
                ACCUMULATE TOTAL DISTANCE TO THE ACCUMULATOR SACC. DISTANCE-
          c
                  WEIGHTED TOTAL VARIANCE TO VACC, DISTANCE-WEIGHTED TOTAL
964
          C
 965
                  ALONG-TRACK COMPONENT TO VGACC, AND DISTANCE-WEIGHTED
          C
 966
          c
                  TOTAL CROSS-TRACK COMPONENT TO VCACC.
 967
          c
 968
                SACC = SACC + SNP
                VACC = VACC + (SNP * VARM)
VGACC = VGACC + (SNP * VGM )
 969
                               + (SNP * VARM)
 970
 971
                VCACC = VCACC + (SN) * VCM )
 972
          C
 973
                ADVANCE TO NEXT-POINT. OLD NEXT-POINT (XLATNP.XLNGNP) BECOMES
          c
                 CURRENT-POINT (XLATC, XLNGC). UPDATE (THETAC, PHIC) COR-
RESPONDING TO (XLATC, XLNGC). INCREMENT LEG NUMBER COUNTER.
 974
          c
 975
          c
 976
                  GIVE ERROR CONDITION FOR RUNAWAY ROUTE (EXCESSIVE NUMBER OF
          C
 977
          c
                 LEGS).
 978
 979
                XLATC = XLATNP
 GRO
                XLNGC = XLNGNP
 981
                 ICONVX = 1
 982
                CALL SPHGLO (ICONVX. XLATC. XL.GC. THETAC. PHIC)
 983
                LEGNO = LEGNO + 1
 984
                IF (LEGNO .GT. LEGMAX) GD TO 7050
 985
          C
                IF CURRENT-POINT (XLATC.XLNGC) IS POINT 'B' (TOLAT.TOLNG). THIS
 986
          c
                 IS THE LAST LEG OF THE FLIGHT, AND SUBROUTINE BRANCHES TO WRAP-
 987
          c
                  UP. OTHERWISE, ROUTINE GOES BACK FOR THE NEXT LEG.
 988
 989
 990
                XLADIF = ABS(XLATC - TOLAT)
 991
                XLNDIF = ABS(XLNGC ~ TOLNG)
 992
                IF (XLADIF .LT. 0.0001 .AND. XLNDIF .LT. 0.0001) LASTLG # 1
                IF (LASTLG .EG. 0) GO TO 3100
993
 404
          c
 995
                COMPUTE FINAL ROUTE-AVERAGED WIND FACTOR WBARBR. DIVIDE DISTANCE-
                 WEIGHTED ACCUMULATORS BY TOTAL DISTANCE TO GET ROUTE-MEAN VARI-
 996
          C
                  ANCE VARBP. ROUTE-MEAN ALONG-TRACK COMPONENT VGBR. AND ROUTE-
 997
          c
                  MEAN CROSS-TRACK COMPONENT VCBR. THEN CALCULATE THE ROUTE-MEAN
 998
          C
 999
                  WIND FACTOR WBARBR.
1000
                VARBR = VACC / SACC
1001
1002
                VGBR
                        = VGACC / SACC
1003
                VCBR
                        = VCACC / SACC
1004
                WBARBR = VGBR - ((VCBR+VCBR + (VARBR / 2.0)) / (2.0 * ASPEED))
```

```
IF (NDEBUG .GT. 0) WRITE (6.8120) STOT, VGBR, VCBR, VARBR, WBARBR
1005
          C8120 FORMAT (1HO. 'GREAT CIRCLE DISTANCE', T30, F15.5//1X.
1006
1007
                 'ROUTE-AVERAGE'. T16. 'ALONG-TRACK'. T30. F15.5/
                 T16. 'CROSS-TRACK', T30. F15.5/T16, 'VARIANCE', T30. F15.5/T16. 'WIND FACTOR', T30. F15.5)
1008
1009
1010
          c
                IF IOPTN = 2. BRANCH TO PART IV OF THE SUBROUTINE TO ADJUST THE
1011
          c
                WIND FACTOR TO THE 90% WORST CASE. OTHERWISE, BRANCH TO PART
1012
          c
                 VI FOR WRAPUP AND NORMAL TERMINATION.
1013
          c
1014
          C
1015
                GO TO (6000, 6000, 4000, 6000), IOPTNP
1016
          c
1017
          C
                             *******************
                                            PART IV
1018
          C
1019
          c
                                        90% WORST WIND
1020
          C
                             *************
1021
          c
                90% WORST WIND FACTOR CALCULATION EMPLOYS THE SAWYER METHOD
1022
          c
                DESCRIBED IN AIR WEATHER SERVICE TECHNICAL REPORT 77-267.
1023
          C
1024
          c
                 GUIDE TO APPLIED CLIMATCLOGY, PAGE 6-8. THE NEW VARIABLES
1025
          c
                USED IN THIS CALCULATION ARE AS FOLLOWS ...
1026
          c
1027
          C
                   XKFACT = FACTOR TO CONVERT MEAN STANDARD VECTOR DEVIATION
1028
                            OF WINDS OVER A ROUTE (STVDVW) TO STANDARD DEVIA-
          c
                            TION OF THE MEAN WIND FACTOR (STDVWF)
1029
          C
1030
          c
1631
                   STVDVW = MEAN STANDARD VECTOR DEVIATION OF WINDS OVER A
1032
          C
                            ROUTE
1033
          c
                   STOVWF = STANDARD DEVIATION OF THE MEAN WIND FACTOR
1034
          C
1035
          C
1036
          c
                   WBARBR = 90% WORST WIND FACTOR (I.E., 10% RISK)
1037
                CALCULATE K-FACTOR OF SAWYER. THE RELATION USED BELOW IS A
1038
          C
1639
          C
                 GEOMETRIC CURVE FIT TO SAWYER'S DATA REPORTED IN AWSTR 77-
1040
          c
                 267. THE GEOMETRIC CURVE FIT WAS CONSTRUCTED USING HEWLETT-
1041
                 PACKARD 65 STAT PAC #2. PAGE 22. THE FUNCTION GIVES
          C
1042
          C
                 K (XKFACT) AS A FUNCTION OF ROUTE LENGTH (STOT).
1043
1044
          4000 \text{ XKFACT} = 0.70585066 * (0.99983056**STDT)
1045
          C
1046
                CALCULATE MEAN STANDARD VECTOR DEVIATION OF WIND OVER ROUTE.
1047
          C
1048
                STVDVW = SQRT(VARBR)
1049
1050
                CALCULATE STANDARD DEVIATION OF THE MEAN WIND FACTOR.
1051
          c
1052
                STOVWF = STVDVW * XKFACT
1053
          c
1054
                CALCULATE 90% WORST WIND FACTOR.
1055
          c
1056
                WBARBR = WPARBR - (1.28 * STDVNF)
1057
          c
1058
                WRAPUP AND NORMAL TERMINATION.
          r
1059
          C
1000
                GD TO 6000
1361
          C
1062
          C
                             *****************
1063
          C
                                             PART V
1064
                                         SIMULATED WIND
1065
1066
          c
1667
                SIMULATED WIND PRESENTLY DEFAULTS TO THE MEAN WIND CASE.
1068
1069
           5000 GO TO 3000
1070
```

```
**********************
1071
                                           PART VI
1072
                                 WRAPUP & NORMAL TERMINATION
1073
         c
1074
                            ************
1075
         C
               WIND FACTOR IS GROUND SPEED MINUS AIR SPEED. USE THIS RELATION
1076
         c
                TO COMPUTE GROUND SPEED (GSPEED) IN KNOTS FROM GIVEN AIR SPEED
1077
1078
                (ASPEED) IN KNOTS AND ROUTE-AVERAGED WIND FACTOR (WBARBR) IN
         c
1079
         C
                KNOTS.
1080
1081
          6000 GSPEED = ASPEED + WBARBR
         c
1082
1083
               NORMAL TERMINATION.
1084
         c
               RETURN
1085
1086
         c
                            *************
1087
         c
                                          PART VII
1088
         c
1069
         c
                                     ABNORMAL TERMINATION
1090
                            **********
1091
         C
1092
          7000 GSPEED = ASPEED
1093
               WRITE (6.8130) JULDAT. GMT. IALT, FRMLAT. FRMLNG. TOLAT.
1094
         8
                TOLNG. IOPTN
          8130 FORMAT (1HO. *****WIND FACTOR FRROR DIAGNOSTICS*****/1X.
1095
1096
         8
                *JULIAN DATE = *. T15. I10. T35. *GMT = *. T41. F10.2. T53.
1097
                'ALT OPTION = '. T66. I10/1X.
         8
                           * ', F10.2. T30. 'FROM-LNG = ', T41. F10.2/1X.
1098
          R
                *FROM-LAT
1099
                'TO-LAT
                             = ', F10.2. T32. 'TO-LNG = ', F10.2. T52.
                *WIND OPTION = *. 110//)
1100
          8
               CALL FXEM (61, 'SUBROUTINE ENRAND...ILLEGAL JULIAN DATE', 10)
1101
1102
               RETURN
1103
          7010 GSPEED = ASPEED
               WRITE (6.8130) JULDAT. GMT. IALT. FRMLAT. FRMLNG. TOLAT.
1104
1105
                TOLNG. IOPTN
               CALL FXEM (61. *SUBROUTINE ENRWND...ILLEGAL ALTITUDE*. 9)
1106
1107
               RETURN
1108
          7020 GSPEED = ASPEED
1109
               WRITE (6.8130) JULDAT. GMT. IALT. FRMLAT. FRMLNG. TOLAT.
1110
                TOLNG. IOPTN
               CALL FXEM (61. 'SUBROUTINE ENRWND...ILLEGAL WIND OPTION'. 10)
1111
1112
               RETURN
1113
          7030 GSPEED = ASPEED
               WRITE (6,8130) JULDAT, GMT, IALT, FRMLAT, FRMLNG, TOLAT,
1114
1115
                TOLNG. IDPTN
               CALL FXEM (61. 'SUBROUTINE ENRWND...ILLEGAL LAT/LON'. 9)
1116
1117
               RETURN
1118
          7040 GSPEED = ASPEED
1119
               WRITE (6.8130) JULDAT, GMT, IALT, FRMLAT, FRMLNG, TOLAT,
1120
                TOLNG. IOPTN
               CALL FXEM (61. SUBROUTINE ENRWND...GRTCIR FAILED TWICE . 10)
1121
1122
          7050 GSPEED = ASPEED
1123
               WRITE (6.8130) JULDAT. GMT. IALT. FRMLAT. FRMLNG. TOLAT.
1124
                TOLNG. IOPTN
1125
               CALL FXEM (61. *SUBROUTINE ENRWND...RUNAWAY ROUTE *. 9)
1126
               RETURN
1127
               END
```

```
CGRTCIR EQ GRT CIRCLE/R. C. WHITON/03 FEB 1979
        C
              SUBROUTINE GRTCIR (ICONV. FRMLAT, FRMLNG. TOLAT, TOLNG. XLAT,
 3
               XLNG. THETAA. PHIA. THETAB. PHIB. GTX. GTY. GTZ. IGUESS. XLNGG.
               XEAST, XNORTH, XLNGAP, SAPRIM, XLATC, THETA, PHI)
 6
        8
        C*
             PROGRAM ID-
                            GRTCIR
 9
        C *
10
        C *
             MET ANALYST-
                            MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
                            MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
11
        C *
             SYS ANALYST-
             PROGRAMMER-
                            MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
        C*
12
13
        C*
14
        C#
             CREATED ON-
                             05 FEB 1979
                                                  PROJECT-
15
        C*
16
        C *
             DESCRIPTION-
                            THIS SUBROUTINE SUBPROGRAM SOLVES THE EQUATION OF
17
        C*
                             THE GREAT CIRCLE DEFINED BY POINTS 'A' ((FRMLAT.
                            FRMLNG) OR (THETAA, PHIA)) AND 'B' ((TOLAT, TOLNG)
18
        C*
                            OR (THETAB. PHIB)) AT AN INTERMEDIATE POINT
19
        C*
20
        C *
                             ((XLAT, XLNG) OR (THETA, PHI)). DEPENDING ON THE
                             VALUE OF THE FLAG ICONV. THE PROGRAM PERFORMS ONE
21
        C*
                            OF THE FOLLOWING FUNCTIONS ...
22
        C *
23
        C *
24
                             ICONV FUNCTION
        C*
25
        C *
26
        C *
                                    GIVEN INPUT LATITUDE AND LONGITUDE OF POINTS
                                    "A" (FRMLAT.FRMLNG) AND '8" (TOLAT.TOLNG).
27
        C *
                                    CALCULATE SPHERICAL COORDINATES (THETAA.
28
        C at
29
        C*
                                    PHIA) AND (THETAB, PHIB) OF THE POINTS BY
                                    INVOKING SUBROUTINE SPHGLO. THEN COMPUTE
30
        C*
        C *
                                    THE CROSS PRODUCT VECTOR QT = QA X QB OF
3.1
32
        C*
                                    "A" AND "B."
33
        C*
34
        C*
                                    INITIALIZE THE EXACT SPHERICAL TRIANGLE
35
        C *
                                    METHOD OF OBTAINING FIRST GUESS LONGITUDE.
36
        C *
                                    FIRST, DETERMINE THE LONGITUDE XLNGAP OF
                                    THE POINT A-PRIME AT WHICH THE GREAT CIR-
37
        C *
                                    CLE ROUTE CROSSES THE EQUATOR. THEN ES-
38
        C*
30
        C*
                                    TABLISH THE INTERIOR ANGLE A-PRIME OF THE
40
        C *
                                    SPHERICAL TRIANGLE (A-PRIME.C-PRIME.B).
41
        C *
                                    THE SINE OF THAT ANGLE IS SAPRIM.
42
        C*
43
        C *
                                    GIVEN INPUT INTERMEDIATE LONGITUDE XLNG.
44
                                    CALCULATE INTERMEDIATE PHI. INTERMEDIATE
        C*
45
        C*
                                    THETA AND INTERMEDIATE LATITUDE XLAT.
46
        C*
47
                                    GIVEN INPUT INTERMEDIATE PHI, CALCULATE IN-
        C *
                                    TERMEDIATE THETA AND INTERMEDIATE LATITUDE
48
        C*
49
        C#
                                    XLAT.
50
        C#
51
        C*
                                    GIVEN INPUT INTERMEDIATE LATITUDE XLAT.
52
        C *
                                    CALCULATE INTERMEDIATE THETA. INTERMEDIATE
                                    PHI AND INTERMEDIATE LONGITUDE XLNG.
53
        C *
54
        C*
55
        C*
                                    GIVEN INPUT INTERMEDIATE THETA, CALCULATE
56
        C *
                                    INTERMEDIATE PHI AND INTERMEDIATE LONGI-
57
        C*
                                    TUDE XLNG.
58
        C*
59
                             THIS SUBROUTINE MUST BE INVOKED ONCE FOR FUNCTION
        C *
                             ICONV = 1 AND ONCE FOR ICONV = 2 BEFORE BEING
60
        C *
61
        C *
                             USED FOR FUNCTION ICONV = 3 THROUGH 6. THUS
                             THERE MUST BE 'INITIAL' CALLS TO THIS ROUTINE
62
        C *
                             USING ICONV = 1 AND 2 BEFORE CALLS USING
63
        C *
64
        C *
                             ICONV = 3 THROUGH 6.
65
        C*
                             THE METHOD USED EMERGES FROM THE VECTOR CALCULUS
             METHOD-
66
        C *
67
        C *
                             IN A RECTANGULAR (X.Y.Z) COORDINATE SYSTEM. QA IS
                             THE POSITION VECTOR OF POINT 'A. WHILE OB IS THAT
68
        C*
```

المستون للعداد

OF POINT 'B.' THE POSITION VECTOR OF THE INTER-69 **C*** MEDIATE POINT IS Q. THE PLANE OF THE GREAT CIRCLE 70 C * 71 **C*** IS DEFINED BY THE CROSS PRODUCT OT = QA X QB. WHICH IS DIRECTED NORMAL TO THE PLANE. 72 C* THE EQUA-TION OF THE GREAT CIRCLE IS DEFINED BY THE RELATION. 73 C * 74 C * 75 **C*** $Q \cdot (QA \times QB) = 0$ 76 C* WHERE THE PERIOD INDICATES A POT PRODUCT. THIS IS 77 C* EQUIVALENT TO SAYING THAT THE COMPONENT OF Q IN THE 78 **C*** QT-DIRECTION IS ZERO. EXPANSION OF THIS PRODUCT IN 79 C * RECTANGULAR COORDINATES LEADS TO THE RELATION. 80 C * 81 C * QTX+SIN(THETA) + COS(PHI) + OTY+SIN(THETA) + SIN(PHI) 82 C * + QTZ*CDS(THETA) = 06.3 C* 84 C * WHERE GTX. GTY AND GTZ ARE THE X. Y AND Z-COMPONENTS 85 C* OF THE CROSS PRODUCT QT, DIVIDED BY R**2, THE 86 **C*** 87 **C*** SQUARE OF THE RADIUS OF THE EARTH. SOLVING THIS **C*** EQUATION FOR THETA. THE COLATITUDE. LEADS TO A 88 DIRECTLY SOLVABLE EQUATION. C * 89 90 C* THETA = ATAN(-QTZ/(QTX*COS(PHI) + QTY*SIN(PHI))91 C* 92 C* 93 C * ON THE OTHER HAND, SOLVING FOR PHI LEADS TO A TRANSCENDENTAL EQUATION OF THE FORM. 94 95 C * 96 C * QTX+COS(PHI) + QTY+SIN(PHI) + QTZ/TAN(THETA) = 0 97 THIS LATTER EQUATION IS SOLVED BY NEWTON'S ITERA-98 C * 99 C * TIVE TECHNIQUE FOR NON-LINEAR EQUATIONS. THE CRITICAL FIRST GUESS FOR PHI IS PROVIDED BY ONE 100 OF THREE METHODS. DEPENDING ON USER DESIRES AND 101 C * WHETHER THE POINT A-PRIM HAS ALREADY BEEN ESTAB-102 C * LISHED. ANY ONE OF THE THREE FIRST GUESS METHODS 163 CAN BE USED. THE METHODS ARE... C * 104 105 C* 106 (1) USER-SPECIFIED FIRST GUESS 107 C * 108 C * (2) APPROXIMATELY PLANAR TRIANGLE 109 110 C * (3) EXACT SPHERICAL TRIANGLE. 111 C * NORMALLY THE THIRD METHOD IS USED, BUT METHOD (2) MUST BE USED AT LEAST ONCE TO BREAK GROUND FOR 112 113 C * 114 C * (3). METHOD (2) IS ONLY APPROXIMATE AND LOSES ACCURACY THE LONGER THE DIS-115 C* TANCE BETWEEN 'A' AND 'B. THIS CAN BE A MAJOR 116 C * LIMITING FACTOR. BECAUSE NEWTON'S TECHNIQUE REQUIRES 117 C* A REASONABLY CLOSE FIRST GUESS FOR PHI. 118 C* 119 C * 120 C * LIMITATIONS-1. THE APPROXIMATELY PLANAR TRIANGLE METHOD USED AS FIRST GUESS FOR NEWTON'S ITERATIVE 121 **C*** TECHNIQUE APPEARS TO BREAK DOWN WHEN ABSOLUTE VAL-122 C * OF THE DELTA-LONGITUDE OR DELTA-LATITUDE BETWEEN 123 C * 124 C* POINTS 'A' AND 'B' EXCEEDS ABOUT 40-50 DEGREES. PAR-TICULARLY WHEN THE TWO POINTS ARE IN DIFFERENT QUAD-125 C * RANTS OF THE GLOBE. UNDER THESE CIRCUMSTANCES. NEW-126 C * TON'S METHOD CONVERGES TO A FALSE ROOT OR FAILS TO 127 C * 128 **C** * CONVERGE ENTIRELY. AND IT BECOMES IMPOSSIBLE TO SOLVE THE EQUATION OF A GREAT CIRCLE FOR THE AZIMUTH 129 C * ANGLE PHI. POINTS 'A' AND 'B' ALONG THE GREAT 130 C * CIRCLE MUST THUS BE KEPT REASONABLY CLOSE TOGETHER. 131 C *

IF POINT 'B' IS TOO FAR REMOVED FROM 'A.' THEN USE THIS SUBROUTINE DETERMINISTICALLY (ICONV = 1 AND 2

(XLAT) FOR AN INTERMEDIATE PHI (XLNG) NOT MORE THAN

30 DEGREES FROM PHIA. THEN USE THAT POINT AS THE

FOLLOWED BY ICONV = 3 OR 4) TO CALCULATE THETA

132

133

134

135

136

C *

C*

C *

C*

137	C*		NEW POINT B IN ALL FURTHER GREAT CIRCLE COMPUTA-
138	C*		TIONS. THIS CAN BE DONE BECAUSE THE 'INTERMEDIATE
139	C*		POINT NEED NOT BE BOUNDED BY "A" AND "B."
			FOINT NEED NOT BE GOODED OF THE AND DE
140	C*		
141	C*		2. IN THE CASE OF A GREAT CIRCLE THAT IS ALSO
142	C*		A LONGITUDE CIRCLE. THE IMPLICIT FUNCTION
143	C*		F(THETA, PHI) = 0.0 DOES NOT RETURN A UNIQUE
144	C*		SOLUTION IN THETA FOR A SPECIFIED PHI. IF THE
145	C*		GREAT CIRCLE IS ALONG A LONGITUDE. ANY VALUE
146	C*		OF THETA IS A SOLUTION TO THE FUNCTION. THIS
147	C*		SUBROUTINE CANNOT BE USED TO CALCULATE THETA
148	C*		FROM PHI IF FRMLNG = TOLNG. AN ERROR MESSAGE
	-		
149	C*		IS DISPLAYED ON SYSOUT AND ERROR FLAG ICONV=12
150	C*		IS SET IF THIS IS ATTEMPTED.
151	C*		
152	C*	INPUT-	FRMLAT = LATITUDE OF POINT 'A' (ORIGIN) IN DEG
		1111 01 -	THE ATTENDED OF TOTAL ATTENDED
153	C*		
154	C+		FRMLNG = LONGITUDE OF POINT 'A' (ORIGIN) IN DEG
155	C*		
156	C#		TOLAT = LATITUDE OF POINT 'B' (DESTINATION) IN DE
157	Č*		TOTAL - ENTITION OF TOTAL OF THE PERSON OF
158	Ç*		TOLNG = LONGITUDE OF POINT 'B' (DESTINATION) IN D
159	c		•
160	C*		THETAA = COLATITUDE ANGLE IN RADIANS OF POINT 'A, .
161	Ċ*		0.0 TO PI RADIANS SOUTHWARD FROM NORTH.
			POSITIVE
162	Ç*		POSTITUE
163	C *		
164	C*		PHIA = AZIMUTH ANGLE IN RADIANS COUNTERCLOCKWISE
165	C +		FROM GREENWICH LOOKING DOWNWARD AT THE
166	Č*		NORTH POLE. PLUS OR MINUS 0.0 TO PI RADI
	-		
167	C*		(NEGATIVE MEANS CLOCKWISE)
168	C*		
169	C*		THETAB = COLATITUDE IN RADIANS OF POINT 'B'
170	C*		
171	C*		PHIB = AZIMUTH IN RADIANS OF POINT '8'
			FUID - AZIMOIN IN KADIANS OF POINT OF
172	C *		
173	C*		IGUESS = FLAG CONTROLLING WHETHER FIRST GUESS IS
174	C *		SPECIFIED FOR LONGITUDE IN VARIABLE
175	C*		XLNGG. IF IGUESS = 1, XLNGG IS INTER-
176	C*		PRETED AS FIRST GUESS LONGITUDE. IF
177	C*		IGUESS = 0. XLNGG IS IGNORED ON INPUT
178	C*		BUT IS FILLED WITH THE PROGRAM-GENERATED
179	C*		FIRST GUESS VALUE ON DUTPUT.
180	C*		
			XEAST = EASTWARD DIRECTION INDICATOR. POSITIVE
181	C*		
182	C*		FOR AIRCRAFT MOTION TOWARD THE EAST.
183	C *		
184	C*		XNORTH = NORTHWARD DIRECTION INDICATOR, POSITIVE
185	C*		FOR AIRCRAFT MOTION TOWARD THE NORTH.
186	C*		WARE A LATTING OF CHARGES BOTHE TO THE
187	C *		XLATC = LATITUDE OF CURRENT-POINT, I.E., THE
188	C *		POINT FROM WHICH THE PROGRAM IS MARCHING
189	C *		IN OBTAINING XLAT, THE LATITUDE OF THE
190	C*		SO CALLED NEXT-POINT.
191	C*		THE THERE HELLS (MESSELE
		7416117 4	
192	C *	INPUT &	
193	C*	OUTPUT-	ICONV = FLAG CONTROLLING FUNCTION TO BE PERFORMED
194	C*		BY THIS SUBROUTINE. SEE TABLE IN *METHOD
195	C*		ABOVE. WHEN RETURNED AS OUTPUT. ICONV =
196	C*		THROUGH 6 FOR NORMAL TERMINATION OR A NUM
197	C *		BER GREATER THAN OR EQUAL TO 10 FOR ABNOR
198	C*		MAL TERMINATION. ABNORMAL TERMINATION
199	C *		CODES FOR ICONV ARE
200	C*		
			10- ERRONEOUS ICONV SPECIFIED
201	C*		
202	C *		11- NEWTON'S ITERATIVE TECHNIQUE FOR
203	C#		SOLUTION OF NON-LINEAR EQUATIONS
204	C*		DID NOT CONVERGE IN NMAX ITERA+
	•		

```
205
         C*
                                               TIONS
206
                                               ATTEMPT WAS MADE TO CALCULATE
                                          12-
         C*
207
         C *
                                               THETA FROM PHI FOR A FLIGHT
208
         C*
                                               ALONG A LONGITUDE CIRCLE
209
         C*
                                     = LATITUDE OF INTERMEDIATE POINT IN DEG
210
         C *
                             XLAT
211
         ¢*
212
                                     - LONGITUDE OF INTERMEDIATE POINT IN DEG
         C*
                              XLNG
213
         C*
214
         C *
                             QTX
                                     = X-COMPONENT OF CROSS PRODUCT QT DIVIDED BY
215
         C *
                                       R##2. COMPUTED IN FUNCTION ICONV = 1 AND
                                       REUSED IN SUBSEQUENT CALLS
216
         C *
217
         C*
218
         C*
                             QTY
                                     = Y-COMPONENT OF ABOVE
219
         C*
220
         C *
                             QTZ
                                     = Z-COMPONENT OF ABOVE
221
         C *
         C*
222
                             XLNGG = FIRST GUESS LONGITUDE FOR ICONV = 4
                                       OR 5. IF VALUE IS NOT SPECIFIED AS
223
         C *
224
         C*
                                       INPUT. THE PROGRAM-GENERATED FIRST
225
         C *
                                       GUESS WILL BE PROVIDED AS OUTPUT
226
         C *
         C*
227
228
         C *
                              XLNGAP = LONGITUDE IN DEGREES OF THE POINT A-PRIME
                                       AT WHICH THE GREAT CIRCLE CROSSES THE
229
         C *
230
         C*
                                       FOUATOR
231
         C *
                             SAPRIM = SINE OF INTERIOR ANGLE A-PRIME OF THE
232
         C*
233
         C *
                                       EXACT SPHERICAL TRIANGLE
234
         C *
235
         C *
                              THETA = COLATITUDE OF INTERMEDIATE POINT IN RADIANS
236
         C #
                                     = AZIMUTH OF INTERMEDIATE POINT IN RADIANS
237
         C *
                             PHI
238
         C *
239
         C*
                                    ALL SOUTH LATITUDES AND EAST LONGITUDES ARE
                             REPRESENTED AS NEGATIVE NUMBERS.
24C
         C*
241
         C *
242
         C*
              SYSTEM SUB-
         C *
              PROGRAMS
243
244
         C*
              USED-
                              SIN. ARSIN. COS. ARCOS. TAN. ATAN. FXEM
245
         C *
246
         C*
              USER SUB-
247
         C *
              PROGRAMS
248
         C*
              USED-
                             SPHGLO. HOG
249
         C*
250
         C*
              ESTIMATED
251
         C *
              CPU TIME-
                             TO BE SUPPLIED.
252
         C *
253
         C*
              STORAGE
254
         C *
              REQUIREMENTS- PROCEDURE PLUS DATA OCCUPY 1042 WORDS OF STORAGE.
         C *
255
256
         C*
              PROGRAM
257
         C *
              UPDATES-
                             NONE
258
         C *
         259
260
         C
               EPSILON IS THE CRITERION FOR CONVERGENCE OF NEWTON'S ITERATIVE
261
         C
                TECHNIQUE AND HAS UNITS OF RADIANS. PI IS THE GEOMETRIC PI.
         c
262
                NMAX IS THE MAXIMUM NUMBER OF ITERATIONS PERMITTED FOR THE NEW-
263
         C
                TON TECHNIQUE. NTRIFG IS A FLAG INDICATING WHETHER THE
264
         c
         c
                DIRECTION (TRIDIR) OF THE SPHERICAL TRIANGLE IN FIRST
265
                GUESS METHOD #3 HAS BEEN REVERSED DUE TO AN EQUATOR
266
         c
267
                CROSSING. NORMALLY ZERO. NTRIFG = 1 INDICATES A REVERSAL.
         c
268
         c
269
         c
               COMMON /DBG/ NDEBUG
270
               DIMENSION APRMD(2). XLNGGG(2). PHIGG(2)
271
                         EPS/0.0001/, PI/3.1415927/, NTRIFG/0/, NMAX/7/
               DATA
```

272

c

```
273
               BRANCH TO APPROPRIATE SECTION OF THE SUBROUTINE BASED ON THE FUNC-
274
                TION REQUESTED VIA THE ICONV FLAG. THE ERROR CONDITION ICONV=10
275
                IS RETURNED FOR ILLEGAL ICONV VALUES. IF FLIGHT IS ALONG
                A LONGITUDE CIRCLE AND ICONV REQUESTS CALCULATION OF THETA.
276
277
         C
                AN ERROR CONDITION ICONV=12 IS SET AND AN ERROR MESSAGE IS
278
         C
                DISPLAYED ON SYSOUT. ICONVS IS A SAVED VALUE OF THE ORIGINAL
279
         c
                ICONV.
280
               ICONVS = ICONV
281
282
               IF (ICONV .GE. 1 .AND. ICONV .LE. 5) GO TO 50
283
               ICONV = 10
284
               GO TO 1000
285
            50 IF (ICONV .NE. 2 .AND. ICONV .NE. 3) GO TO 60
286
               IF (ABS(FRMLNG - TOLNG) .GT. 0.0001) GO TO 60
287
               ICONV = 12
288
               GO TO 1020
289
            60 GO TO (100, 200, 300, 400, 500, 600). ICONV
290
291
         c
292
         c
                             **************
293
                                           PART I
         c
294
         C
                                      FUNCTION ICONV = 1
295
         c
                                  CROSS PRODUCT COMPUTATION
296
         c
297
         C
298
         c
               CONVERT (LAT.LNG) OF 'A' AND 'S' TO (THETAA.PHIA) AND (THETAB.
299
         C
                PHIB).
300
         c
301
           100 ICONVX = 1
302
               CALL SPHGLO (ICONVX. FRMLAT. FRMLNG. THETAA. PHIA)
               CALL SPHGLO (ICONVX. TOLAT. TOLNG. THETAR. PHIB)
303
304
         C
305
               PRELIMINARIES FOR COMPONENTS OF POSITION VECTORS OF AND OB.
306
307
               SINTHA = SIN(THETAA)
308
               COSTHA = COS(THETAA)
               SINPHA = SIN(PHIA )
309
310
               COSPHA = COS(PHIA
311
               SINTHB = SIN(THETAB)
312
               COSTHB = COS(THETAB)
313
               SINPHB = SIN(PHIB )
314
               COSPHB = COS(PHIB
15ء
               RECTANGULAR COMPONENTS OF POSITION VECTORS OA AND OP. DIVIDED
316
         C
317
         c
                BY THE RADIUS OF THE EAPTH R.
318
               GAX = SINTHA * COSPHA
319
320
               GAY = SINTHA * SINPHA
321
               GAZ = COSTHA
               QBX = SINTHR * COSPHB
322
323
               QBY = SINTHB * SINPHB
324
               QBZ = COSTHB
325
               COMPUTE COMPONENTS OF THE CROSS PRODUCT VECTOR OT = QA X QB.
326
         C
327
         c
                DIVIDED BY THE RADIUS OF THE EARTH SQUARED, R**2.
328
         C
               QTX = QAY + QBZ - QAZ + QBY
QTY = QAZ + QBX - QAX + QBZ
329
330
               QTZ = QAX + QBY - QAY + QBX
331
332
         c
               INITIALIZE TRIANGLE FLAG, USED TO REVERSE THE DIRECTION
333
         C
334
         C
                TRIDIR OF THE SPHERICAL TRIANGLE IN THE FIRST GUESS PRO-
335
         ¢
                CEDURE WHENEVER THE ROUTE CROSSES THE EQUATOR.
336
         C
337
               NIRIFG = 0
338
         c
               END OF FUNCTION ICONV = 1. RETURN TO MAIN PROGRAM.
339
         C
340
```

```
341
               RETURN
342
         c
343
         c
344
345
                                             PART II
         с
с
с
346
                                        FUNCTION ICONV = 2
                                     EQ CROSSING PT & ANGLE
347
348
         C
                                 *******
349
         c
350
         c
                DETERMINE WHETHER POINT 'A' OR POINT 'B' IS TO SERVE AS POINT
351
         C
                 *E.* WHICHEVER IS CLOSEST TO THE EQUATOR WILL SERVE AS *E.*
352
                 THE OTHER WILL SERVE AS 'F.' NSIGN IS A FLAG INDICATING THE
         c
                ROUTE INVOLVES AN EQUATOR CROSSING. NORMALLY 1. NSIGN TAKES
353
         c
                ON THE VALUE 2 FOR ROUTES CROSSING THE EQUATOR. NCASE IS
354
         C
355
         c
                 A FLAG THAT HAS THE VALUE 12 WHEN POINT 'A' SERVES AS POINT
         c
                 'E' AND THE VALUE 34 WHEN POINT 'B' SERVES AS POINT 'E.
356
357
358
           200 NSIGN =
559
                IF (FRMLAT .LT. 0.0 .AND. TOLAT .GT. 0.0) NSIGN = 2
IF (FRMLAT .GT. 0.0 .AND. TOLAT .LT. 0.0) NSIGN = 2
360
               XLATE = FRMLAT
361
362
                XLNGE = FRMLNG
363
               PHIE
                         PHIA
364
                XLATE
                          TOLAT
365
                XLNGF
                          TOLNG
                      =
366
               PHIF
                       =
                         PHIB
367
                NCASE =
368
                IF ( ABS(XLATE) .LT. ABS(XLATF) ) GO TO 205
               XLATE = TOLAT
369
370
                XLNGE =
                         TOLNG
371
               PHIE
                         PHIB
               XLATE
372
                      =
                         FRMLAT
373
                XLNGF
                      =
                          FRMLNG
374
               PHIF
                          PHIA
                      =
375
               NCASE =
                          34
376
           205 CONTINUE
377
               IF (NDEBUG .GT. 1) WRITE (6,6000) NSIGN, NCASE
         C6000 FORMAT (1H , T4, 'NSIGN, NCASE = ', T36, 2110)
376
379
380
                ESTABLISH INITIAL HEADING OF AIRCRAFT AT POINT 'E' ON THE GREAT
         c
                CIRCLE. CONVERT HEADING AT 'E' IN DEGREES TO ANGLE 'E' IN
381
         C
382
         c
                RADIANS. TAKE ITS TANGENT TANE FOR LATER USE IN THE FIRST
383
         c
                GUESS PROCEDURE #2.
384
385
               HDGE = HDG (XLATE, XLNGE, XLATF, XLNGF)
386
                IF (HDGE .GE. 270.0) GO TO 212
387
                IF (HDGE .GE. 180.0) GD TO 214
388
                IF (HDGE .GE. 90.0) GO TO 216
389
                GO TO 218
390
           212 E = HDGE - 270.0
391
                GO TO 220
392
           214 E = 270.0 - HDGE
393
                GO TO 220
394
           216 E = HDGE -
395
               GO TO 220
396
           218 E = 90.0 - HDGE
               GO TO 220
397
398
           220 TANE = TAN (E * (PI/180.0))
               IF (NDEBUG .GT. 1) WRITE (6.6010) HDGE. E
399
         C6010 FORMAT (1H . T4, 'HEADING AT POINT E = ', T36, F10.4,
400
401
                ' DEG'/1x. T4. T4. 'ANGLE E = '. T36. F10.4. ' DEG')
         C
402
         C
               SET LATITUDE TO ZERO AND DETERMINE LONGITUDE WHERE GREAT CIRCLE
403
         c
404
                CROSSES EQUATOR. THIS IS POINT A-PRIME. WHOSE LONGITUDE IS
405
                XLNGAP IN DEGREES.
         c
406
         c
407
               XLAT
                      = 0.0
408
               GO TO 500
```

a large course of the percent of the

```
409
          230 XLNGAP = XLNG
410
         C
              IF (NDEBUG .GT. 1) WRITE (6.6020) XLNGAP
         C6020 FORMAT (1H . T4. *LONGITUDE OF EQUATOR CROSSING = *. T36. F10.4.
411
412
         c
               · DEG · )
413
414
              IF LONGITUDE XLNGAP OF EQUATOR CROSSING POINT 'A-PRIME' IS
         C
415
                WEST OF LONGITUDE OF POINT 'A' (FRMLNG), THE SPHERICAL
         C
416
         c
                TRIANGLE OPENS EASTWARD (TRIDIR = -1.0). OTHERWISE, IT
417
         c
               OPENS WESTWARD (TRIDIR = 1.0).
418
419
              XLGAPP = XLNGAP
420
               FRMLNN = FRMLNG
               IF (XLGAPP .LT. -90.0) XLGAPP = XLGAPP + 360.0
421
              IF (FRMLNN .LT. -90.0) FRMLNN = FRMLNN + 360.0
422
              IF (FRMLNN - XLGAPP ) 240.245.245
423
424
          240 TRIDIR = -1.0
425
              GO TO 250
426
           245 TRIDIR = 1.0
427
          250 CONTINUE
              IF (NDEBUG .GT. 1) WRITE (6.6030) TRIDIR
428
429
         C6030 FORMAT (1H . T4, 'TRIDIR = '. T36, F10.4)
430
         C
              ESTABLISH INITIAL HEADING OF THE AIRCRAFT AT POINT A-PRIME ON
431
         c
432
               CIRCLE. CONVERT HEADING AT A-PRIME TO ANGLE A-PRIME. CONVERT
                ANGLE A-PRIME TO RADIANS AND TAKE ITS SINE FOR LATER USE IN
433
         ¢
               FIRST GUESS PROCEDURE #3.
434
         C
435
436
           260 HDGAP = HDG (XLAT, XLNGAP, TOLAT, TOLNG)
437
              IF (HDGAP .GE. 270.0) GD TO 270
438
               IF (HDGAP .GE. 180.0) GO TO 275
439
              IF (HDGAP .GE. 90.0) GO TO 280
440
              GO TO 285
441
          270 APRIMD = HDGAP - 270.0
442
              GO TO 290
443
          275 APRIMD = 270.0 - HDGAP
444
              GG TO 290
445
           280 APRIMD = HDGAP - 90.0
446
              GO TO 290
447
          285 APRIMD = 90.0 - HDGAP
448
              GU TO 290
444
          290 SAPRIM = SIN (APRIMD * (PI/180.0))
450
              IF (NDEBUG .GT. 1) WRITE (6,6040) APRIMD
         C6040 FORMAT (1H . T4. 'APRIMD = '. T36. F10.4. ' DEG')
451
452
453
              END OF FUNCTION ICONV = 2. RETURN TO MAIN PROGRAM.
454
        C
455
              RETURN
456
         ¢
457
         c
458
         c
                            ************
459
         c
                                         PART III
                                      FUNCTION ICONV = 3
46C
         c
461
         C
                                        XLNG TO XLAT
462
         c
463
         c
464
               CONVERT INTERMEDIATE LONGITUDE XLNG TO INTERMEDIATE PHI.
         C
465
         c
466
467
              CALL SPHGLO (ICONVX, 0.0, XLNG, THETAX, PHI)
465
         C
469
470
         c
                            **************
471
                                           PART IV
         C
472
         C
                                       FUNCTION ICONV = 4
473
         c
                                          PHI TO XLAT
474
         C
475
476
              CALCULATE THETA FROM PHI.
```

The property of ANSAGE AND A

```
477
478
           400 THETA = ATAN(-QTZ / (QTX * COS(PHI) + QTY * SIN(PHI) ) )
479
              IF (THETA) 410,900,900
           410 THETA = THETA + PI
480
               GO TO 900
481
482
         c
483
         c
484
         c
485
                                         PART V
486
                                       FUNCTION ICONV = 5
487
                                         XLAT TO XLNG
         C
488
469
               SAVE AZIMUTH ANGLE OF THE CURRENT POINT IN PHIC FOR LATER USE IN
490
491
                CHECKING FOR MONOTONIC PROGRESS IN LONGITUDE.
492
         C
493
           500 PHIC = PHI
494
         c
495
               CONVERT INTERMEDIATE LATITUDE XLAT TO INTERMEDIATE THETA.
         C
496
         C
497
               ICONVX = 1
AGR
               CALL SPHGLO (ICONVX. XLAT. 0.0. THETA, PHIX)
499
         c
500
         c
501
         c
                            ***************
502
                                            PART VI
503
         c
                                        FUNCTION ICONV = 6
         c
                                         THETA TO XLNG
504
505
506
507
         c
              CALCULATE PHI FROM THETA (NEWTON'S ITERATIVE TECHNIQUE WITH AN
                APPROPRIATE FIRST GUESS).
508
         C
509
         C
510
         c
               THREE METHODS CAN BE USED AS A FIRST GUESS FOR THE AZIMUTH
               ANGLE PHI. THE FIRST AND LEAST SOPHISTICATED METHOD IS
511
         C
512
         c
                FOR THE USER TO SPECIFY A FIRST GUESS BY SETTING INPUT
513
               IGUESS = 1 AND BY INSERTING A FIRST GUESS LONGITUDE IN
                XLNGG IN HIS CALL TO THE GRTCIR SUBROUTINE. THIS METHOD
514
         C
                IS IMPLEMENTED IN STATEMENTS 605-609.
515
         c
516
         c
               THE SECOND FIRST GUESS METHOD IS THAT OF APPROXIMATELY
517
                PLANAR TRIANGLES. THIS METHOD HAS IMPORTANT LIMI-
518
         c
519
                TATIONS ON ITS RELIABILITY AND SO IS USED ONLY TO FIND THE
               EQUATORIAL LONGITUDE OF THE GREAT CIRCLE (FUNCTION ICONV =
520
         c
                2). THE APPROXIMATELY PLANAR TRIANGLE METHOD
521
         C
522
               IS IMPLEMENTED IN STATEMENTS 610-624.
523
         C
               THE THIRD AND MOST SOPHISTICATED FIRST GUESS METHOD IS THAT
524
         c
525
               OF EXACT SPHERICAL TRIANGLES. HIS METHOD REQUIRES
                                               ING POINT AND ANGLE.
T GUESAS METHOD IS
526
         c
                KNOWLEDGE OF THE EQUATORIAL C
                THE EXACT SPHERICAL TRIANGLE I
527
         c
528
                IMPLEMENTED IN STATEMENTS 625-700.
529
                625-700.
530
         C
531
           600 IF (IGUESS .EO. 1) GO TO 605
532
               IF (ICONV .EQ. 2) GO TO 610
               GO TO 625
533
534
         c
535
536
                           *****FIRST GUESS METHOD #1****
         c
537
         c
538
               SPECIFIED FIRST GUESS. STATEMENTS 605-609.
539
           605 ICONVX = 1
DUMLAT = 0.0
DUMTHE = 0.0
540
541
542
               CALL SPHGLO (ICONYX, DUMLAT, XLNGG, DUMTHE, PHIG)
543
544
               PHIN
                      = PHIG
```

والمحاوية ويتهاطي الموادات والما

```
545
               ICONVX
546
               CALL SPHGLO (ICONVX, DUMLAT, XLNGG, DUMTHE, PHIG)
547
           609 GD TO 750
548
549
         c
                            *****FIRST GUESS METHOD #2****
550
         C
551
         c
552
               APPROXIMATELY PLANAR TRIANGLE FIRST GUESS. STATE-
553
         C
                MENTS 610-624.
554
         C
555
           610 IF (NSIGN .EQ. 1) GO TO 612
556
               IF (NSIGN .EQ. 2) GO TO 616
           612 PHIN = PHIE + ABS( XLATE * (PI/180.0) * TANE )
557
558
               PHIG = PHIN
559
               GO TO 620
           616 PHIN = PHIE + ABS( XLATE * (PI/180.0) / TANE )
PHIG = PHIN
560
561
562
               GO TO 620
563
           620 ICONVX = 2
564
               CALL SPHGLO (ICONVX. DUMLAT. XLNGG. DUMTHE. PHIG)
565
               IF (NDEBUG .GT. 1) WRITE (6,6050) PHIE, XLATE, PHIN
566
         C6050 FURMAT (1H . T4. 'PHIE, XLATE, PHIN = '. T36. 3F10.4.
567
                * RAD.DEG.RAD.)
568
               IF (NDEBUG .GT. 1) WRITE (6,6050) XLNGG. PHIG
569
         C6060 FORMAT (1H . T4, *FIRST GUESS LONGITUDE & AZIMUTH = *,
570
                T36. 2F10.4. ' DEG.RAD')
         c
571
           624 GO TO 750
572
         c
573
         C
574
         C
                            *****FIRST GUESS M: THOD #3****
575
         C
576
               EXACT SPHERICAL TRIANGLE FIRST GUESS. STATEMENTS 625-700.
         C
577
576
         C
               LATITUDE XLAT OF THE INTERMEDIATE POINT GIVES THE ANGULAR
                DISTANCE DE-PRIME IN RADIANS.
579
         c
580
         C
581
           625 DEPRIM = XLAT * (PI/180.0)
582
         c
               IF (NDEBUG .GT. 1) WRITE (6.6070' DEPRIM
583
         C6070 FORMAT (1H . T4. "DEPRIM = ". T36. F10.4. " RAD")
504
585
               LAW OF SINES FOR SPHERICAL TRIANGLES GIVES SOLUTION FOR ANGULAR
         C
586
         C
                DISTANCE APRMD(1) AND APRMD(2) IN RADIANS. APRMD(2) IS
587
         C
                (180.0-APRMD(1)) AND HAS THE SAME SINE AS APRMD(1). THIS PRO-
588
         C
                CEDURE IS NECESSARY BECAUSE THE ARC SINE FUNCTION RETURNS
589
                ONLY THE PRINCIPAL ANGLE.
         C
590
         c
591
               SRATIO = SIN(DEPRIM) / SAPRIM
592
         C
593
         c
               IF THE ABSOLUTE VALUE OF SRATE; EXCEEDS THE LEGAL RANGE. THEN
594
         c
                THE SOLUTION IN LONGITUDE IS INDETERMINATE FOR A GIVEN LATI-
595
                TUDE. IN SUCH A CASE, THE METHOD MAY BE SAID TO HAVE FAILED
         C
596
         C
                TO CONVERGE, AND ERROR (ICONV = 11) IS ASSIGNED.
597
595
               IF ( ABS(SRATID) .LE. 1.0) GO TO 626
599
               ICONV = 11
600
               GO TO 1010
           626 APRMD(1) = ARSIN ( SRATIO )
601
               APRMO(2) = PI - APRMO(1)
662
603
         c
               IF (NDEBUG .GT. 1) WRITE (6.60%0) APRHD(1), APRHD(2)
         C6080 FJRMAT (1H , T4, 'APRMD(1), APRMD(2) = ', T36, 2F10.4. ' RAD')
604
005
606
         c
               INVERSE OF FORMULA FOR GREAT CIRCLE DISTANCE (SEE SUBROUTINE
607
         C
                'DISTAN') GIVES FIRST GUESSES XLNGGG(I). I = 1.2. FOR LATITUDE
                OF INTERMEDIATE POINT IN DEGREES. THE FACT THAT THERE ARE
608
                TWO XLNGGG VALUES EMERGES FROM THE FACT THAT THERE ARE TWO
609
         C
610
         C
                APRMO VALUES. SIGN MULTIPLIER TRIDIR (-1.0 OR 1.0) CAUSES
611
                ADDITION OF LONGITUDE FLEMENT FOR THE CASE WHERE PUINT
                "A-PRIME" IS EAST OF POINT "A" (SPHERICAL TRIANGLE OPENS
612
```

. . .

```
613
         C
                WESTWARD). OTHERWISE, LONGITUDE ELEMENT IS SUBTRACTED.
614
615
               SPECIAL CODE IS NEEDED FOR THE CASE OF AN EQUATOR CROSSING.
616
         C
                THE CODE IMMEDIATELY FOLLOWING AND EXTENDING THROUGH STATE-
                MENT 629 ACTS TO REVERSE THE DIRECTION OF THE SPHERICAL
617
                TRIANGLE AT THE POINT WHERE AN AIRCRAFT PATH CROSSES THE
618
619
         c
                EQUATOR SOUTHWARD FROM THE NORTHERN HEMISPHERE OR NORTHWARD
620
         C
                FROM THE SOUTHERN HEMISPHERE. ONLY IF NSIGN EQUALS 2 WILL
                AN EQUATOR CROSSING OCCUR. AN EQUATOR CROSSING IS DECLARED
621
                WHEN THE CURRENT POINT XLATC IS 0.0 AND THE NEXT-POINT IS
         C
622
                NEGATIVE (FOR A SOUTHWARD CROSSING) OR POSITIVE (FOR A
623
         C
624
         c
                NORTHWARD CROSSING). WHETHER A FLIGHT IS PROCFEDING NORTH-
625
                WARD OR SOUTHWARD IS INDICATED BY THE XNORTH FLAG.
626
         C
627
               IF (NTRIFG .EQ. 1) GQ TO 629
               IF (NSIGN .EQ. 1) GO TO 629
628
629
               IF (XNORTH) 627,628,628
630
           627 IF (XLATC .NE. 0.0) GD TO 629
631
               IF (XLAT .GE. 0.0) GO TO 629
               TRIDIR = -TRIDIR
632
633
               NTRIFG = 1
               60 TO 629
634
635
           628 IF (XLATC .NE. 0.0) GO TO 629
               IF (XLAT .LE. 0.0) GD TO 629
636
637
               TRIDIR = -TRIDIR
638
               NTRIFG = 1
639
           629 CONTINUE
640
         C
               IF (NDERUG .GT. 1) WRITE (6.6090) TRIDIR
641
         C6090 FORMAT (1M . T4. 'TRIDIR = '. T36. F10.4)
042
         C
643
               DO 640 I = 1.2
644
           630 XLNGGG(I) = XLNGAP + TRIDIR * ( (180.0/PI) *
                ARCOS ( COS(APRMD(I)) / COS( XLAT * (PI/180.0) ) ) )
645
         8
646
         c
               ADJUST COMPUTED LONGITUDE XLNGG FOR DATELINE FOLD.
647
         C
64H
         C
644
               IF (XLNGGG(I) .GT. 180.0) GD TO 632
               IF (XLNGGG(I) .LT. -180.0) GO TO 634
55C
               GD TO 636
651
652
           632 \times NNGGG(I) = \times NNGGG(I) - 360.0
653
               GO TO 636
054
           634 \times NGGG(I) = \times NGGGG(I) + 360.0
055
               GO TO 636
056
         ζ
               CONVERT LONGITUDES XLNGGG(I) IN DEGREES TO AZIMUTHS PHIGG(I) IN
657
         C
658
         C
                RADIANS.
659
           636 ICONVX = 1
660
               CALL SPHGLO (ICONVX, DUMLAT, XLNGGG(I), DUMTHE, PHIGG(I))
661
               IF (NDEBUG .GT. 1) WRITE (6,6100) XLNGGG(I)
062
         C610U FORMAT (1H . T4. 'XLNGGG(I) = ', T36. F10.4, ' DEG')
663
           640 CONTINUE
064
604
               INITIALLY. WHICHEVER LONGITUDE XLNGGG(I) HAS AN ASSOCIATED
666
         c
                AZIMUTH PHIGG(I) ABSOLUTELY CLOSER TO PHIC. THE AZIMUTH
067
         C
668
         C
                ANGLE OF THE CHRRENT POINT, 15 SELECTED AS THE FIRST GUESS
                LONGITUDE XLNGG IN DEGREES WITH CORRESPONDING AZIMUTH PHIG
669
                (POINTER IS SAVED IN IGOOD). IF XEAST IS GREATER THAN
670
         C
                ZERO (LESS THAN ZERO). PHIG MUST BE GREATER THAN (LESS
671
         C
                THAN) PHIC. IF THIS IS NOT THE CASE, THE ALTERNATE LONGI-
672
673
                TUDE SOLUTION IS USED AS FIRST GUESS (POINTERS IGOOD AND
674
         C
                IBAD ARE SWAPPED).
675
         C
676
         C
               IF (NDEBUG .GT. 1) WRITE (6.6110) PHIGG. PHIC. XEAST
677
         C6110 FORMAT (1H . T4, 'PHIG(1)-AND-(2).PHIC.XEAST = '. T36. 4F10.4)
               IGOOD = 1
678
6.79
               TRAD = 2
680
               IF ( (ABS(PHIGG(IBAD) - PHIC)) .GT. (ABS(PHIGG(IGODD) - PHIC)) )
```

+ 7

```
681
                GO TO 645
682
               ITEMP = IGOOD
083
               IGOOD = IBAD
684
               ISAD = ITEMP
685
           645 IF (PHIGG(IGODD) - PHIC) 650,652,652
           650 IF (XEAST)
                                         660,654,654
686
067
           652 IF (XEAST)
                                         654,654,660
           654 ITEMP = IG000
088
689
               IGGOD = IBAD
               IBAD = ITEMP
690
691
           660 CONTINUE
692
         c
               IF (NDEPUG .GT. 1) WRITE (6.6120) XLNGGG(IGOOD), PHIGG(IGOOD),
                XLNGGG(IBAD), PHIGG(IBAD)
693
         c
694
         C6120 FORMAT (1H . T4. 'XLNGGG.PHIGG FOR IGOOD = '. T36. 2F10.4/1X.
695
         C
                T4. 'XLNGGG, PHIGG FOR IBAD = '. T36, 2F10.4)
696
         C
697
         c
               SET FIRST GUESS LONGITUDE AND PHI.
596
         c
699
               XLNGG = XLNGGG(IGOOD)
               PHIG = PHIGG (IGOOD)
700
701
         C
702
         C
               STORE PHIG IN PHIN.
703
         C
704
           690 PHIN = PHIG
705
           700 GO TO 750
706
         C
707
         C
708
         C
                            *****NEWTON'S ITERATIVE TECHNIQUE****
709
         C
710
         C
               IMPROVE BY NEWTON'S METHOD.
711
         c
712
         C
               INITIALIZE ITERATION COUNT AND DENOMINATOR.
713
         C
714
           750 N = 0
               NP1 = N + 1
715
716
               TANTHE = TAN(THETA)
717
718
         C
               FUNCTION.
719
        C
720
           775 FPHI = GTX * COS(PHIN) + GTY * SIN(PHIN) + GTZ / TANTHE
721
         C
720
         Ċ
               FIRST DERIVATIVE OF FUNCTION.
723
         C
124
               FPFHI = -QTX * SIN(PHIN) + QTY * COS(PHIN)
7.5
         C
726
         Ċ
               IMPROVED PHI.
121
         C
728
               PHINP1 = PHIN + (FPHI / FPPHI)
129
               TEST FOR CONVERGENCE. STOP WITH ERROR CONDITION ICONV = 11 IF
7.30
         C
731
                METHOD FAILS TO CONVERGE IN NHAX ITERATIONS.
730
         (
               DELPHI = ABS(PHINP1 + PHIN)
7.3.3
               IF (DELPHI - EPS) 850.850.800
734
735
           800 PHIN = PHINP1
736
               N = N + 1
737
               NP1 = N + 1
738
               IF (N .LT. NMAX) GO TO 775
734
               ICONV = 11
740
               GO TO 1010
741
           850 PHI = PHINP1
742
```

454.19

```
743
744
        C
745
         c
                                          PART VII
746
         c
                                        ALL FUNCTIONS
         c
747
                                CONVERT SOLUTION (THETA, PHI)
                                BACK TO GLOBAL (XLAT.XLNG)
748
749
         C
                               *******************
750
        c
           900 ICONVX = 2
751
752
               CALL SPHGED (ICONVX. XLAT. XENG. THETA. PHI)
753
               IF (ICONV .EQ. 2) GO TO 230
754
        c
755
         Ç
756
         c
         c
                                          TIIV TPAS
757
                                      NORMAL TERMINATION
758
         C
759
         c
                            ***********
         c
760
              RETURN
761
762
         c
763
         c
         c
764
765
         C
                                          PART IX
766
                                     ABNORMAL TERMINATION
767
        c
768
769
          1000 WRITE (6.6130) FRMLAT, FRMLNG, TOLAT, TOLNG
         770
771
772
773
               CALL FXEM (61. 'SUBROUTINE GRTCIR...ILLEGAL ICONV', 9)
774
               GO TO 1050
775
          1010 CONTINUE
776
              GO TO 1050
777
          1020 WRITE (6.6130) FRMLAT. FRMLNG, TOLAT, TOLNG
               CALL FXEM (61. 'SUBROUTINE GRTCIR...SOLUTION NOT UNIQUE IN THETA'.
778
779
          1050 IF (ICONYS .E0. 2 .DR. ICONYS .EQ. 3) GO TU 1060
IF (ICONYS .EQ. 4 .OR. ICONYS .EQ. 5) GO TO 1070
780
781
782
          1060 XLAT = 0.0
783
               THETA = 0.0
784
              RETURN
          1070 XLNG = 0.0
PHI = 0.0
785
786
              RETURN
767
788
               END
```

Same of the second

```
CSPHGLD CONV SPH<>GLOBAL/R. C. WHITO:/O5 FEB 1979
              SUBROUTINE SPHGLO (ICONV, XLAT, XLON, THETA, PHI)
 5
        6
        C *
 7
             PROGRAM ID-
        C *
                            SPHGLD
 8
        C*
             MET ANALYST-
                            MAJ ROGER C. WHITON. USAFETAC/DNS. EXT 5412
 9
             SYS ANALYST-
                            MAJ ROGER C. WHITUN. USAFETAC/DNS. EXT 5412
        C *
10
                            MAJ ROGER C. WHITON. USAFETAC/DNS. EXT 5412
        C *
             PROGRAMMER-
11
        Ct
12
        C *
             CREATED ON-
                            05 FEB 1979
                                                    PROJECT- 192301
13
        C*
14
             DESCRIPTION-
                            THIS SUBROUTINE SUBPROGRAM CONVERTS GLOBAL COOR-
        C *
15
        C *
                            DINATES (LAT+1.0N) TO MATHEMATICAL SPHERICAL COOR-
16
        C *
                            DINATES (THETA, PHI). OR VICE-VERSA. DEPENDING ON
17
        C *
                            THE VALUE OF THE ICONV FLAG (ICONV=1 FOR CONVER-
18
        C *
                            SION OF (LAT.LON) TO (THETA.PHI). AND ICONV=2 FOR
19
                            CONVERSION OF (THETA, PHI) TO (LAT, LON).
20
        C *
             METHOD-
                            FOR CONVERSION OF (LAT-LON) TO (THETA-PHI) ...
21
        C *
22
        C *
23
        C *
                               THETA = (PI/2.0) - XLAT
                               24
        C *
25
        C *
                               IF (PHI .GT. PI) PHI = PHI - (2.0*PI)
26
        C *
27
        C *
28
        C *
                            FOR CONVERSION OF (THETA, PHI) TO (LAT, LON) ...
29
        C*
                               XLAT = (P1/2.0) - THETA
30
        C *
31
        C *
                               XLON = -PHI
                                                         FOR PHI .LT. PI
32
        C*
                               XLON = (2.0*PI) - PHI
                                                         FOR PHI .GE. PI
33
        C*
34
        C *
                                  FOR ABS(PHI) .LT. 2.0*PI
35
        C *
                            NOTE THAT SOUTH LATITUDES AND EAST LONGITUDES ARE
36
        ( *
37
                            HANDLED AS NEGATIVE NUMBERS AND MUST BE SO SPECI-
        C *
38
        C*
                            FIED ON INPUT/OUTPUT FROM THE SUBROUTINE. LATI-
39
        C *
                            TUDES AND LONGITUDES ARE IN DEGREES. WHILE THETA
                            AND PHI ARE IN RADIANS. THE AZIMUTH ANGLE PHI IS
40
        C*
41
        C *
                            THE ANGLE COUNTERCLOCKWISE FROM GREENWICH. THE
42
        C *
                            ABSOLUTE VALUE RINGES FROM 0.0 TO 2.0*PI RADIANS.
                            NEGATIVE VALUES INDICATE CLOCKWISE. THE COLATI-
4.3
        C *
۵۵
        C *
                            TUDE ANGLE THETA IS THE ANGLE SOUTHWARD FROM THE
45
                            NORTH POLE AND RANGES FROM 0.0 TO PI RADIANS.
46
        C *
             INPUT &
47
        C *
                            ICONV
                                    = FLAG CONTROLLING WHETHER CONVERSION IS
48
        C *
             OUTPUT-
                                      FROM (LAT.LON) TO (THETA.PHI) (ICONV=1)
49
        ( *
                                      OR FROM (THETA.PHI) TO (LAT.LON)
                                      (ICUNV=2). WHEN RETURNED AS DUTPUT.
50
        C *
                                      ICONV = 1 BR 2 FOR NORMAL TERMINA-
51
        C#
52
        C *
                                      TION OF A NUMBER GREATER THAN OR
53
                                      OR EQUAL TO 10 FOR ABNORMAL TERMINA-
        C *
                                      TION. ABNORMAL TERMINATION CODES
54
        C *
55
        C *
                                      FOR ICUNV ARE...
56
        C *
57
                                              ERRONEOUS ICONV SPECIFIED
        C *
                                         10-
5,8
                                         11-
                                              OUT-OF-BOUNDS XLAT
        C #
                                         12-
                                              OUT-OF-BOUNDS XLON
59
        C *
60
        C *
                                         13-
                                              OUT-OF-BOUNDS THETA
        C *
                                          14-
                                              OUT-OF-BOUNDS PHI
61
62
        C *
63
        C*
                            XLAT
                                    = LATITUDE IN DEGREES. 0.0 TO 90.0.
                                      POSITIVE FOR NORTH LATITUDES AND NEGA-
54
65
        C *
                                      TIVE FOR SOUTH LATITUDES.
66
        ( *
67
        C .
                            XLON
                                    = LONGITUDE IN DEGREES. 0.0 TO 180.J. PUSI-
```

5.4

68

C*

TIVE FIR WEST LONGITUDES AND MEGATIVE FOR

```
69
                                          EAST LUNGITUDES.
         C *
 70
         C*
 71
         C *
                               THETA
                                        = COLATITUDE ANGLE IN RADIANS. 0.0 TO PI
 72
          C*
                                          RADIANS SOUTHWARD FROM NORTH. POSITIVE.
 73
         C *
                                        = AZIMUTH ANGLE IN RADIANS, 0.0 TO PI
 74
         C *
                               PHI
 75
         C*
                                          RADIANS, COUNTERCLOCKWISE FROM GREENWICH
                                          LOOKING DOWN AT THE NORTH POLE. NEGATIVE
 76
         C *
 77
                                          VALUES INDICATE CLOCKWISE.
         C *
 78
          C *
 79
         C *
               SYSTEM SUB-
 80
         C *
               PROGRAMS
 81
         C *
               USED-
                               NONE
 82
         C *
 83
         C*
               USER SUB-
34
         C *
               PROGRAMS
               USED-
 65
         C *
                               NONE
 86
         C*
67
         C*
               ESTIMATED
88
         C *
               CPU TIME-
                               TO BE SUPPLIED.
89
         C *
90
         C *
               STORAGE
 91
         C *
               REQUIREMENTS-
                               PROCEDURE PLUS DATA OCCUPY 154 WORDS OF
 92
                               CORE STORAGE.
         C *
93
         (*
 94
         C *
               PROGRAM
 95
         C *
               UPDATES-
                               NONE
 96
         C *
 47
         98
         C
 49
                DATA TWGPI/6.2831853/.
                                            P1/3.1415927/. PID2/1.5707963/.
100
         8
                      DTOR/0.01745329/. RT6D/57.295780/
101
102
                DEPENDING ON THE VALUE OF THE ICONV FLAG. CONVERT (LAT.LON)
         c
                 TO (THETA.PHI) (ICONV=1) OR CONVERT (THETA.PHI) TO
103
         C
                 (LAT.LON) (ICONY=2). FOR INPUT ICONY OTHER THAN 1 OR 2.
104
         c
105
                 AN ERROR CONDITION (ICONV=10) IS RETURNED.
         c
106
         C
107
                IF (ICONV .Eq. 1 .OR. ICONV .Eq. 2) GO TO 100
108
                ICONV = 10
109
                GO TO 1000
110
           100 GO TO (200, 400), ICONV
111
                CONVERT (LAT.LON) TO (THETA.PHI). RETURN FRROR CONDITION ICONV=11 FOR OUT-OF-BOUNDS XLAT AND ICONV=12 FOR OUT-OF-
                                                      RETURN FRROR CONCITION
112
         C
113
114
         C
                 BOUNDS XLON.
115
116
            200 IF (XLAT .LE. 90.0 .AND. XLAT .GE. -90.0) GO TO 220
                ICDNV = 11
117
118
                GD TO 1000
            220 IF (XLON .LE. 180.0 .AND. XLON .GE. -180.0) GO TO 250
119
120
                ICONV = 12
121
                GD TO 1000
122
            250 THETA = PID2 - (XLAT * DTOR)
123
                IF (XLON) 260,260,275
            260 PHI = - (> ',ON * DTOR)
124
                IF (PHI .GT. FI) PHI = PHI - TWOPI
125
                GO TO 800
126
            275 PHI = TWOPI - (XLON + DTOR)
127
                IF (PHI .GT. PI) PHI = PHI - TWOPI
128
129
                GO TO 800
130
         c
                CONVERT (THETA.PHI) TO (LAT.LON). RETURN ERROR CONDITION ICONV=13 FOR OUT-OF-BOUNDS THETA AND ICONV=14 FOR OUT-OF-
131
         C
132
         c
                 BOUNDS PHI. ADJUST COMPUTED LONGITUDE FOR DATELINE FOLD.
133
134
            400 IF (ABS(THETA) .LE. PI) GO TO 420
135
136
                ICONV = 13
```

Sugar Care San Contract

```
GO TO 1000
420 IF (ABS(PHI) .LE. TWOPI) GO TO 450
137
138
139
                    ICONV = 14
140
                    GO TO 1000
              450 XLAT = RTOD * (PID2 + THETA)

IF (PHI *LT* PI) GO TO 475

XLON = RTOD * (TWOPI * PHI)
141
142
143
144
                    GO TO 500
              475 XLON = -(PHI * RTOD)
500 IF (XLON •GT• 180•0) XLON = XLON - 360•0
IF (XLON •LT• -180•0) XLON = XLON + 360•0
145
146
147
148
            c
149
            C
                    NORMAL TERMINATION.
150
            C
               800 RETURN
151
152
            C
153
            c
                    ABNORMAL TERMINATION.
154
           C
155
             1000 XLAT = 0.0
                    XLON = 0.0
156
157
                    THETA = 0.0
                    PHI = 0.0
156
                    RETURN
159
160
                    END
```

TO THE WAY TO WASHING MY

```
CDISTAN GRT CIRCLE DIST/R. C. WHITON/26 OCT 1978
 2
              SUBROUTINE DISTAN (FRMLAT, FRMLNG, TOLAT, TOLNG, GCD)
 3
        5
        C *
 6
 7
        C*
             PROGRAM ID-
                              DISTAN
                              MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
 В
        (*
             MET ANALYST-
             SYS ANALYST-
                              MAJ ROGER C. WHITON. USAFETAC/DNS. EXT 5412
 g
        C *
10
        C *
             PROGRAMMER-
                              MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
11
        ( *
             CREATED ON-
                              26 OCT 1978
                                                    PROJECT- 192301
12
        C *
1.3
        C *
        C*
             DESCRIPTION-
                              THIS SUBROUTINE SUBPROGRAM COMPUTES GREAT CIRCLE
14
                              DISTANCE OVER SPHERE OF THE EARTH BETWEEN TWO
15
        C*
16
        C *
                              POINTS 'A' AND 'B' WHOSE (LATITUDE, LONGITUDE) IS
                              SPECIFIED IN INPUT ARGUMENTS.
17
        ( *
        C *
16
             METHOD-
                              THE CONVENTIONAL FORMULA FOR THE GREAT CIRCLE ARC
19
        C #
                              GCD IN RADIANS IS USED (REF 2). NAMELY.
20
        C *
        C *
21
22
        C *
                                GCD(RADIANS) = ARCOS(SIN(FRMLAT) *SIN(TOLAT) +
        ( *
                                  COS(FRMLAT) + COS(TOLAT) + COS(TOLNG-FRMLNG))
د ع
24
        C *
        C*
                              WHERE INDEPENDENT VARIABLES ARE AS DESCRIBED IN
25
                              THE INPUT ARGUMENTS BELOW. LATER, GCD IN RADIANS
26
        C *
                              OF ARC IS CONVERTED TO GCD IN NAUTICAL MILES (NM)
27
        C *
        C *
                              OF CIRCULAR DISTANCE BY MULTIPLYING BY THE
26
29
        C*
                              RADIUS OF THE EARTH, 3440 NM. GCD IS RETURNED TO
        C*
                              THE MAIN PROGRAM IN NM.
30
31
        C *
        C*
             LIMITATIONS-
                                 (LAT.LON) OF DESTINATION MUST NOT BE SAME
32
3.3
        C *
                                  AS (LAT.LON) OF ORIGIN.
34
        C *
35
        C*
             REFERENCES-
                                 CONRAD AND POLLACK, 1950- METHODS IN CLIMA-
                                  TOLOGY
36
        C *
37
        C *
                                  HEWLETT-PACKARD, 1975- HP-65 NAVIGATION PAC 1
38
        C *
                                      = LATITUDE OF POINT 'A' (DRIGIN) IN DEG
39
             INPUT-
        C *
                              FRMLAT
40
        C *
                              FRMLNG
                                      = LONGITUDE OF POINT 'A' (ORIGIN) IN DEG
41
        C*
                              TULAT
                                      = LATITUDE OF POINT 'B' (DESTINATION) IN
42
        C *
                                        DEG
43
        C *
                              TOLNG
                                      = LONGITUDE OF POINT 'B' (DESTINATION) IN
44
        C *
45
        C *
                              NCTE- ALL SOUTH LATITUDES AND EAST LONGITUDES MUST
46
        C *
47
        C *
                              BE SUPPLIED AS NEGATIVE NUMBERS.
48
        C *
             OUTPUT-
                                      = GREAT CIRCLE DISTANCE IN NM OF ARC OVER
49
        C *
                              GCD
50
        C *
                                        THE SURFACE OF THE EARTH
51
        C *
             SYSTEM SUB-
52
        C *
53
        C*
             PROGRAMS
54
        C *
             USED-
                              SIN. COS. ARCOS
55
        C *
56
        C *
             USER SUB-
57
        C *
             PROGRAMS
58
                              NONE
        C *
             USED-
59
        C*
60
        C*
             ESTIMATED
61
        C*
             CPU TIME-
                              ON A DEC-10 GENERAL PURPOSE COMPUTER. THIS SUB-
                              ROUTINE REQUIRES 2.3 CPU MILLISECONDS PER CALL.
62
        C*
        C *
6.3
64
        C *
             STORAGE
                              PROCEDURE PLUS DATA OCCUPY 94 WORDS OF
65
        C *
             REQUIREMENTS-
        C *
                              STORAGE.
66
```

```
67
        C*
             PROGRAM
        C*
68
                              NONE
69
        C*
             UPDATES-
        C *
70
        71
              CONSTANTS. DTOR CONVERTS DEGREES TO RADIANS. A IS THE RADIUS OF THE EARTH IN NAUTICAL MILES (NM).
72
        C
73
        C
74
        C
75
              DATA DTDR/0.01745329/. A/3440.0/
76
77
        C
              COMPUTE GCD IN RADIANS OF ARC. MULTIPLICATION BY DTOR CONVERTS
        C
78
               DEGREES TO RADIANS.
79
        C
        C
80
              SIN1 = SIN(FRMLAT * DTOR)
SIN2 = SIN(TOLAT * DTOR)
COS1 = COS(FRMLAT * DTOR)
81
82
83
               COS2 = COS(TOLAT * DTOR)
84
               COS3 = COS( (TOLNG * DTOR) - (FRMLNG * DTOR) )
85
               GCR = SIN1 * SIN2 + COS1 * COS2 * COS3
GCD = ARCOS(GCR)
86
87
88
               CONVERT GCD FROM RADIANS OF ARC TO CIRCULAR DISTANCE BY MULTIPLY~
89
               ING BY THE RADIUS OF THE EARTH A. 3440 NM.
        C
90
91
        C
               GCD = GCD * A
92
        c
93
               TERMINATION.
        C
94
95
        C
               RETURN
96
               END
97
```

A CONTRACTOR CONTRACTOR

```
INITIAL HEADING/P.L. HEROD/12 FEB 1979
        CHDG
        C
 3
              FUNCTION HDG (XLAT1. XLNG1. XLAT2. XLNG2)
 5
        C*
        C*
             PROGRAM ID-
 8
        C*
             MET ANALYST-
                              CAPT PATRICK L. HEROD. USAFETAC/DNS. EXT 5412
             SYS ANALYST-
                              MAJ ROGER C. WHITON, USAFETAC/DNS, EXT 5412
 9
        C*
10
        ¢*
             PROGRAMMER-
                              CAPT PATRICK L. HEROD, USAFETAC/DNS. EXT 5412
11
        C *
                                                    PROJECT-
        C *
             CREATED ON-
                              12 FEB 1979
                                                              192301
12
13
        C*
14
        C *
             DESCRIPTION-
                              THIS FUNCTION SUBPROGRAM FINDS THE INITIAL HEADING
                              (HDG) ALONG A GREAT CIRCLE COURSE FLOWN FROM POINT
15
        C *
                              'A' (XLAT1, XLNG1) TO POINT 'B' (XLAT2, XLNG2).
16
        C*
17
        C*
                              WAS DEVELOPED FROM THE HEWLETT-PACKARD 65 (HP-65)
                              AVIATION PAC 1, GREAT CIRCLE NAVIGATION, APRIL
        C *
18
19
        C*
                              1975.
20
        C*
21
        C#
             METHOD-
                              THIS FUNCTION SUBPROGRAM FIRST USES INPUT LATITUDES
                              AND LONGITUDES FOR POINTS 'A' AND 'B' AND CONVERTS
        C*
22
                              THEM FROM DEGREES TO RADIANS. IT THEN USES THE
23
        C*
                              HEADING FORMULA FOUND ON PAGE 54 OF THE HP-65 AVIA-
24
        C *
                              TION PAC 1 FOR CALCULATION OF THE INITIAL HEADING
25
        C *
26
        C*
                              FROM POINT 'A. SINCE THE GREAT CIRCLE DISTANCE
                              (GCD) IS IN THIS HEADING FORMULA, THE FUNCTION SUB-
27
        C*
                              PROGRAM MAKES A CALL TO SUBROUTINE DISTAN. WHICH
28
        C ±
                              RETURNS THE GCD IN NAUTICAL MILES (NM) FROM POINT
29
        C *
                              'A' TO POINT 'B.' FUNCTION HDG CONVERTS GCD IN
30
                              NM TO GCD IN RADIANS. THE GCD IN RADIANS IS USED IN
31
        C *
                              THE HDG FORMULA. HDG IS COMPUTED IN RADIANS.
32
        C*
                              THERE IS A FINAL CONVERSION PROCESS WHICH ENABLES
33
                              THIS FUNCTION TO OUTPUT THE INITIAL HEADING IN
        C*
34
35
        C *
                              DEGREES.
36
                              TRUNCATION AND ROUNDOFF ERRORS OCCUR WHEN POINT 'A'
37
        C *
             LIMITATIONS-
                              AND POINT 'B' ARE VERY CLOSE TOGETHER (1 MILE OR
38
        C *
39
        C*
                              LESS). INPUT DATA IS IN DECIMAL DEGREES. NOT DE-
                              GREES, MINUTES AND SECONDS. NORTH LATITUDES AND
40
        C *
                              WEST LONGITUDES ARE POSITIVE NUMBERS. SOUTH LATI-
41
        C*
                              TUDES AND EAST LONGITUDES ARE NEGATIVE NUMBERS.
42
        C *
43
        C *
                              HEWLETT-PACKARD. 1975- AVIATION PAC 1.
44
        C *
             REFERENCE-
45
        C *
                              GREAT CIRCLE NAVIGATION
46
        C *
                              XLAT1 = LATITUDE OF POINT 'A' (ORIGIN) IN DECIMAL
             INPUT-
47
        C *
46
        C *
                                        DEGREES
49
                                     = LONGITUDE OF POINT 'A' (ORIGIN) IN DECIMAL
        C *
                              XLNG1
50
        C#
                                       DEGREES
                              XLAT2 = LATITUDE OF POINT 'B' (DESTINATION) IN
51
        C *
52
        C*
                                        DECIMAL DEGREES
53
        C *
                              XLNG2 = LONGITUDE OF POINT 'B' (DESTINATION) IN
                                        DECIMAL DEGREES
54
        C*
55
        C *
                                     = INITIAL COURSE HEADING ALONG GREAT CIRCLE FROM POINT 'A' TO POINT 'B' IN DECIMAL
56
             DUTPUT-
                              HDG
57
        C *
56
        C *
                                        DEGREES TOWARD WHICH
59
        C *
60
        C*
             SYSTEM SUB-
61
        C*
             PROGRAMS
62
        C*
             USED-
                              SIN. COS. ARCOS
        C *
63
64
        C *
             USER SUB-
65
        C *
             PROGRAMS
                              DISTAN
66
        C*
             USED-
67
        C*
             ESTIMATED
68
```

```
69
        C*
             CPU TIME-
                             TO BE SUPPLIED.
 70
        C*
 71
        C*
             STORAGE
 72
        C*
             REQUIREMENTS-
                             PROCEDURE AND DATA OCCUPY 108 WORDS OF CORE
 73
        C*
                             STORAGE.
 74
        C*
 75
        C*
             PROGRAM
 76
        C*
             UPDATES-
                             NONE
 77
        C *
 78
        79
        C.
 80
              DATA A/3440.0/, PI/3.1415927/. DTOR/0.01745329/
 81
        c
 82
              CONVERT LATITUDE AND LONGITUDE FROM DEGREES TO RADIANS.
        c
 83
        c
 84
              XLATIR = XLAT1 * DTOR
 85
              XLNG1R = XLNG1 * DTOR
 86
              XLATER = XLATE + DTOR
 87
              XLNG2R = XLNG2 + DTOR
 88
        c
 89
              CALCULATE GCD IN NAUTICAL MILES (GCDNM) FROM (XLAT1, XLNG1) TO
        C
 90
        c
               (XLAT2,XLNG2).
 91
        C
 92
              CALL DISTAN (XLAT1, XLNG1, XLAT2, XLNG2, GCDNM)
 93
        C
 94
              CONVERT GCD IN NAUTICAL MILES (GCDNM) TO GCD IN RADIANS (GCDR).
 95
        C
96
              GCDR = GCDNM / A
 97
        c
 98
              CALCULATE HEADING IN RADIANS (HDGR) FROM HEWLETT-PACKARD 65
        c
99
        c
100
              HDGR = ARCOS((SIN(XLAT2R) + (COS(GCDR) * SIN(XLAT1R))) /
101
        8
                      (SIN(GCDR) * COS(XLAT1R)))
102
              IF (SIN((XLNG1 - XLNG2) * DTOR) .LT. 0.0) HDGR = 2.0 * PI - HDGR
103
        c
              CONVERT HEADING IN RADIANS (HDGR) TO HEADING IN NAUTICAL MILES
104
        c
105
        c
               (HDG).
106
        c
107
              HDG = HDGR / DTOR
108
        c
109
        C
              NORMAL TERMINATION.
110
        c
111
              RETURN
112
              END
```

```
CBRLNG BRACKET LONGITUDE/P. L. HEROD/17 JAN 1979
              SUBROUTINE BRENG (XLNG. XLNGLO. XLNGHI)
        C*
 7
        C*
             PROGRAM ID-
                            BRLNG
             MET ANALYST-
        C*
                            CAPT PATRICK L. HEROD. USAFETAC/DNS. EXT 5412
 9
             SYS ANALYST-
                            MAJ ROGER C. WHITON. USAFETAC/DNS. EXT 5412
        C*
                            CAPT PATRICK L. HEROD. USAFETAC/DNS. EXT 5412
10
        C*
             PROGRAMMER-
12
        C *
             CREATED DN-
                             17 JAN 1979
                                                    PROJECT 192301
13
        C *
                            THIS SUBROUTINE SUBPROGRAM FINDS THE LONGITUDINAL
14
        C*
             DESCRIPTION-
15
        C*
                            VALUES THAT BRACKET A GIVEN LONGITUDE. THE LON-
                            GITUDINAL BRACKET VALUES ARE IN INCREMENTS OF 30.0
        C*
16
17
        C*
                            I.E., A GIVEN LONGITUDE OF 132.35 HAS BRACKET VALUES
18
        C *
                            OF 120.0 AND 150.0.
19
        C *
                             THE METHOD USED TO COMPUTE THE BRACKET LONGITUDE
             METHOD-
20
        C*
21
        C*
                             VALUES IS A SIMPLE ALGEBRAIC ALGORITHM INVOKING
                             INTEGER ALGEBRA. SEPARATE EQUATIONS ARE REQUIRED
22
        C*
                             DEPENDING ON WHETHER WEST (POS) OR EAST (NEG)
        C*
23
24
        C*
                            LONGITUDES ARE USED.
25
        C*
        C *
             LIMITATIONS-
                             ANY LONGITUDE VALUE FROM 0.00 TO 179.99 CAN BE
26
                             USED AS INPUT BUT THE BRACKET LONGITUDE VALUES
27
        C#
        C*
                             WILL ALWAYS BE 30.0 TIMES SOME INTEGER NUMBER
28
29
        C*
                             (0.0. 30.0. 60.0. ETC.).
30
        C *
31
        C*
                            IN THE CASE WHERE THE INPUT VALUE IS A BRACKET
        C*
                            LONGITUDE AND A POSITIVE NUMBER, THE RETURNED
32
                            LONGITUDE BRACKET VALUES WILL BE THE INPUT
33
        C *
                             VALUE PLUS 30.0. IF THE INPUT VALUE IS A BRACKET
34
        C*
35
        C*
                            VALUE AND A NEGATIVE NUMBER, THE RETURNED LONGITUDE
                            BRACKET VALUES WILL BE THE INPUT VALUE AND THE
36
        C *
                             INPUT VALUE MINUS 30.0. IF PLUS/MINUS 180.0 IS THE
37
        C*
                             INPUT VALUE, THE RETURNED LONGITUDE BRACKET VALUES
38
        C *
                             ARE FICTITIOUS (PLUS/MINUS 180.0 AND PLUS/MINUS
39
        C *
        C*
40
                            210.0).
41
        C*
             INPUT-
                             XLNG = LONGITUDE FOR WHICH BRACKETING LONGITUDE
42
        C*
43
        C*
                                    VALUES ARE DESIRED.
44
        C*
                            XLNGLO = LOWER BRACKETING LONGITUDE VALUE
45
        C *
             OUTPUT-
46
        C *
47
                            XLNGHI = UPPER BRACKETING LONGITUDE VALUE
        C*
48
        C*
49
        €*
             SYSTEM SU8-
50
        C *
             PROGRAMS
                            IFIX
        C *
             USED-
51
52
        C *
53
        C *
             USER SUB-
54
        C*
             PROGRAMS
                            NONE
55
        C #
             USED-
56
        C *
57
        C *
             ESTIMATED
                            TO BE SUPPLIED
58
        C *
             CPU TIME-
59
        C *
60
        C *
             STORAGE
             REQUIREMENTS-
        C *
                            PROCEDURE PLUS DATA OCCUPY 60 WORDS OF STORAGE.
61
        C *
62
63
        C*
             PROGRAM
64
        C *
             UPDATES-
                            NONE
65
        C#
        C++++++++++++++++
66
67
        C
```

Commence of Carlos Andrews

DATA DELTLO/30.0/

```
69
              BRANCH TO POSITIVE OR NEGATIVE LONGITUDE COMPUTATION.
70
        c
71
        c
72
              IF (XLNG) 110.105.105
73
        c
              LOWER LONGITUDE LIMIT FOR POSITIVE LONGITUDE.
74
75
        C
          105 XLNGLO = IFIX (XLNG/DELTLO) + DELTLO
76
77
        ¢
78
              UPPER LONGITUDE LIMIT FOR PUSITIVE LONGITUDE.
        c
79
        C
              XLNGHI = XLNGLO + DELTLO
80
81
              GO TO 120
        c
82
              LOWER LONGITUDE LIMIT FOR NEGATIVE LONGITUDE.
83
        c
84
        c
          110 XLNGLO = (IFIX(XLNG/DELTLO) - 1) * DELTLO
85
        c
86
87
        c
              UPPER LONGITUDE LIMIT FOR NEGATIVE LONGITUDE.
80
        c
              XLNGHI = XLNGLO + DELTLO
ь9
90
        c
              TERMINATION.
91
        C
92
        C
93
          120 RETURN
94
              END
```

```
CBRLAT BRACKET LATITUDE/P. L. HEROD/02 JAN 1979
             SUBROUTINE BREAT (XLAT. XLATEG. XLATHI)
 3
        5
 6
        C *
 7
        C*
            PROGRAM ID-
                           BRLAT
 8
        C*
            MET ANALYST-
                           CAPT PATRICK L. HEROD. USAFETAC/DNS. EXT 5412
            SYS ANALYST-
                           MAJ ROGER C. WHITON.
                                                 USAFETAC/DNS, EXT 5412
 9
        C*
            PROGRAMMER-
                           CAPT PATRICK L. HEROD. USAFETAC/DNS. EXT 5412
10
        C*
        C*
11
            CREATED ON-
                           02 JAN 1979
                                                  PROJECT 192301
        C*
12
13
        C*
14
        C*
            DESCRIPTION-
                           THIS SUBROUTINE SUBPROGRAM FINDS THE LATITUDINAL
15
                           VALUES IN TENTHS OF DEGREES THAT BRACKET A GIVEN
       C*
16
       C*
                           LATITUDE. THE LATITUDE BRACKET VALUES ARE IN
17
        C *
                           INCREMENTS OF 15.0, I.E., A GIVEN LATITUDE OF 27.46
                           HAS BRACKET VALUES OF 15.0 AND 30.0.
18
        C *
19
        C *
                           THE METHOD USED TO COMPUTE THE BRACKET LATITUDE
20
        C*
            METHOD-
                            VALUES IS A SIMPLE ALGEBRAIC ALGORITHM INVOKING
21
        C *
                           INTEGER ALGEBRA. SEPARATE EQUATIONS ARE REQUIRED
        C*
22
23
        C *
                           DEPENDING ON WHETHER NORTH (POS) OR SOUTH (NEG)
        C *
                           LATITUDES ARE USED.
24
25
        C*
            LIMITATIONS-
26
        C*
                           ANY LATITUDE VALUE FROM 0.00 TO PLUS/MINUS 89.99
27
        C *
                           CAN BE USED AS INPUT BUT THE BRACKET LATITUDE
28
        C *
                           VALUES WILL BE 15.0 TIMES SOME INTEGER NUMBER
                           (0.0, 15.0, 30.0, 45.0, ETC.). IN THE CASE WHERE
29
        C*
30
        C*
                           THE INPUT VALUE IS A BRACKET VALUE AND A POS-
31
        C*
                           ITIVE NUMBER, THE RETURNED LATITUDE BRACKET
32
        C *
                           VALUES WILL BE THE INPUT VALUE AND THE INPUT
33
        C *
                           VALUE PLUS 15.0. IF THE INPUT VALUE IS A BRACKET
34
        C *
                           VALUE AND A NEGATIVE NUMBER. THE RETURNED LATITUDE
                           BRACKET VALUES WILL BE THE INPUT VALUE AND THE
35
        C*
36
        C *
                           INPUT VALUE MINUS 15.0. IF PLUS/MINUS 90.0 IS THE
                           INPUT VALUE. THE RETURNED LATITUDE BRACKET
37
        C *
                           VALUES ARE FICTITIOUS (PLUS/MINUS 90.0 AND
38
        C *
39
        C*
                           PLUS/MINUS 105.0).
40
        C*
                           XLAT = LATITUDE FOR WHICH BRACKETING LATITUDE
41
        C *
            INPUT-
                           VALUES ARE DESIRED.
42
        C*
43
        C*
44
        C *
            OUTPUT-
                           XLATLO = LOWER BRACKETING LATITUDE VALUE
45
        C*
46
        C*
                           XLATHI = UPPER BRACKETING LATITUDE VALUE
47
        C*
48
            SYSTEM SUB-
        C *
40
        C*
            PROGRAMS
50
        C#
            USED-
                           IFIX
51
        C*
52
        C*
            USER SUB-
53
        C*
            PROGRAMS
54
        C*
            USED-
                           NONE
55
        C*
56
        C*
            ESTIMATED
57
        C *
            CPU TIME-
                           TO BE SUPPLIED
58
        C*
50
        C*
            STORAGE
60
        C*
61
        C *
            REQUIREMENTS- PROCEDURE PLUS DATA OCCUPY 58 WORDS OF STORAGE.
62
       C *
63
        C *
            PROGRAM
64
        C*
             UPDATES-
                           NONE
65
        C *
        66
67
        C
```

DATA DELTLA/15.0/

```
69
              BRANCH TO POSITIVE OR NEGATIVE LATITUDE COMPUTATION.
70
71
        c
72
              IF (XLAT) 110.105.105
73
        c
              LOWER LATITUDE LIMIT FOR POSITIVE LATITUDE.
74
        c
75
       C
         105 XLATLO = IFIX (XLAT/DELTLA) * DELTLA
76
77
78
        c
              UPPER LATITUDE LIMIT FOR POSITIVE LATITUDE.
79
        C
80
              XLATHI = XLATLO + DELTLA
61
              GO TO 120
        c
62
83
              UPPER LATITUDE LIMIT FOR NEGATIVE LATITUDE.
84
        c
          110 XLATHI = IFIX (XLAT/DELTLA) * DELTLA
85
86
        c
              LOWER LATITUDE LIMIT FOR NEGATIVE LATITUDE.
87
        c
        c
88
89
              XLATLO = XLATHI - DELTLA
90
        c
              TERMINATION.
91
        c
92
        C
93
          120 RETURN
94
              END
```

Same to be a series

